Registration no:						

Total Number of Pages: 02

BTECH PECS5304

5th Semester Regular / Back Examination 2016-17

THEORY OF COMPUTATION

BRANCH(S): BIOTECH, CSE, IT, ITE

Time: 3 Hours Max Marks: 70 Q.CODE: Y304

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

- a) Define the PDA with its tuple specifications.
- **b)** Design an NFA which accepts set of all strings with two consecutive zero's.
- c) What is the difference between DFA and NFA?
- **d)** What do you mean by a decidable problem?
- **e**) Define NFA mathematically. Design an NFA intuitively which accepts set of all strings containing 3rd symbol from right side is 1.
- f) Discuss the Chomsky's Hirerchy of Grammars with examples.
- **g**) State Church-Turing hypothesis.
- **h**) Define TM with its tuple specifications
- i) What is a Context Sensitive Grammar? Define in brief with an example.
- j) Define non-deterministic PDA.
- Q2 a) Derive the regular expression for the given DFA

(5)

Page

	D)	S->aA	
210		A->aABD bB a B->b 210 210 210 210 D->d	210
Q3	a)	Discuss the importance of pumping lemma with an example.	(5)
	b)	Reduce the following grammar into CNF $S \rightarrow aAD$ $A \rightarrow aB \mid bAB$	(5)
210		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210
Q4		Explain in detail with an example the conversion of NFA to minimized DFA for the by constructing NFA for the regular expression abb (a b)*.	(10)
Q5	a)	Compute the Godel number for the following sequence:	(5)
		i. 2,0,1 ii. 3,0,0,1 iii. 2,0,3,0 iv. 0,1,1	
210	b)	What is an Ackerman's function? By defining the Ackerman's function find out the values of	(5)
		i. A (1,2) ii. A (3,3)	
Q6	a)	Design a PDA to accept $L=\{w w(a,b)^*\}$ such that	(5)
210		i. $n_a(w)^{210} > n_b(w)$ 210 210 210	210
		ii. $n_a(w) < n_b(w)$	
		Where n_a (w) and n_b (w) represent number of a's and number of b's respectively.	
		where Π_a (w) and Π_b (w) represent number of a 3 and number of b 3 respectively.	
210	b)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack.	(5)
210 Q7	-	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by	
		Construct a context free grammar to generate the set of all balanced parentheses over the alphabet ∑= {(,)} and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet {0,1} that contains set of strings of 0's	210
	a)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet $\{0,1\}$ that contains set of strings of 0's and 1's except those containing the substring 001.	(5)
Q7	a)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet $\{0,1\}$ that contains set of strings of 0's and 1's except those containing the substring 001. Design a TM to accept the language $L(M) = \{a^nb^nc^n n>=1\}$	(5) (5)
Q7	a) b)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet $\{0,1\}$ that contains set of strings of 0's and 1's except those containing the substring 001. Design a TM to accept the language $L(M) = \{a^n b^n c^n n > = 1\}$ Write short notes on (any two) the following:	(5) (5)
Q7	a)b)a)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet $\{0,1\}$ that contains set of strings of 0's and 1's except those containing the substring 001. Design a TM to accept the language $L(M) = \{a^n b^n c^n n > = 1\}$ Write short notes on (any two) the following: Complexity class P vs NP CYK Algorithm	(5) (5)
Q7	a)b)a)b)c)	Construct a context free grammar to generate the set of all balanced parentheses over the alphabet $\Sigma = \{(,)\}$ and then design the PDA accepting L of this CFG by empty stack. Construct a Turing Machine over alphabet $\{0,1\}$ that contains set of strings of 0's and 1's except those containing the substring 001. Design a TM to accept the language $L(M) = \{a^n b^n c^n n > = 1\}$ Write short notes on (any two) the following: Complexity class P vs NP	(5) (5)