Registration no:

Total Number of Pages: 2

B.Tech PCBM4302

5th Semester Regular / Back Examination 2016-17 SIGNALS AND SYSTEMS

BRANCH(S): CSE, IT, ITE

Time: 3 Hours Max Marks: 70 Q.CODE: Y381

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

- a) State whether the following discrete time system is static or dynamic where $y(n) = \log_{10}|x(n)|$
- b) State whether the following system is BIBO stable or not where y(n) = x(n) x(-n-1) + x(n-1)
- c) Prove that $a_0 = 0$ and $a_n = 0$ (where a_0 and a_n represents trigonometric Fourier Series Coefficients) if x(t) exhibits odd symmetry.
- **d)** Find the Fourier transform of A (constant).
- e) Find the Z transform of $x^*(n)$.
- f) Determine the energy and power of a d.t. unit step signal.
- **g)** Find the DFT of $\delta(n)$.
- **h)** Find the DFT of a purely real and even signal x(n).
- i) Distinguish between FIR and IIR systems.
- j) Prove that autocorrelation at zero lag represents energy of a discrete time signal x(n).
- Define autocorrelation and cross correlation. Show that autocorrelation (2+8) is an even function of lag 'l' and it is maximum at zero lag.
- Q3 a) Prove that the Parseval's relation in the Z domain (5) $\sum_{-\infty}^{\infty} x_1(n) x_2^*(n) = \frac{1}{2\pi j} \int X_1(Z) X_2^*(\frac{1}{V^*}) z^{-1} dz$
 - **b)** Find the linear convolution between $x_1(n) * x_2(n)$ where (5) $x_1(n) = \{1, \frac{1}{2}, 3, 4\}$ and $x_2(n) = \{-1, 0, \frac{1}{2}, 2\}$ using graphical method.

- Q4 a) Perform a 4 point circular convolution using DFT/IDFT method where $x_1(n) = \{-1,2,-3,4\} \text{ and } x_2(n) = \{4,7,2\}$
 - **b)** Determine the inverse Z transform of $X(Z) = \ln \frac{\alpha}{\alpha z^{-1}} ROC |z| > \frac{1}{\alpha}$ (5)
- **Q5** a) Determine all possible values of x(n) for $X(Z) = \frac{z^5 + z^2 + 1.5z + 0.5}{z^5 + 1.5z^2 + 0.5z}$ (5)
 - **b)** An LTI system is described by the difference equation y(n)=x(n)+0.81x(n-1)-0.81x(n-2)-0.45x(n-2). Determine the system function of the system. Sketch the poles and zeros on the Z plane. Access the stability.
- Q6 a) Solve the following difference equation using unilateral Z transform $y(n) \frac{7}{12}y(n-1) + \frac{1}{12}y(n-2) = x(n) \text{ for } n \ge 0 \text{ with initial conditions } y(-1) =$ 210 210 210 210
 - b) Define circular convolution. Derive the circular convolution relation between $x_1(n)$ and $x_2(n)$ (5)
- Find the Fourier transform of periodic impulse train having amplitude 1 and time period T_0 . Find the trigonometric form of Fourier series of the half wave rectified sine wave having peak amplitude A 210 210
- Q8 Write short answer on any TWO: (5 x 2)
 - a) Gibb's phenomena
 - b) Sampling theorem
 - c) Parseval's relation
 - d) Stability analysis in the Z domain