| Registration No: | | | | | | | | | | | | | | | | |---|--|--|--|---|---|--|--|--|--|--------------------------------|--------------------------------|-------------------------|-------------------------------------|------|-------------------------| | Total Number of Pages: 02 | | | | | | | | | B.Tech. | | | | | | | | PET5J001 5 th Semester Regular Examination 2017-18 210 210 Fiber Optics and Optoelectronic Devices BRANCH: ECE, ETC Time: 3 Hours Max Marks: 100 Q.CODE: B458 Answer Question No.1 and 2 which are compulsory and any four from the rest. | | | | | | | | | | | | | | | | | • | The figures in the right hand margin indicate marks. | | | | | | | | | | | | | | | | Q1 | a)
b) | Answer the fin an optical fransma) Coding for c) Electrical to In single-mod | iber on the control of o | comm
functi
prote
cal co | unica
on?
ection
onvers | ition s
sion | syster
b)
d) | n, whi
Deco
Reco | ich an
ding d | nong
of inpu | the fout | ollowir
a
itput s | ype
ng is not
standard | | (2 x 10) ²¹⁰ | | 210 | c) | cladding? a) As a cresc c) As an evar If a light trave | ent w | ave
nt wa | 210
I VE | b) As
d) Al | s a gib
I of th | bous
e abo | wave
ve |) | 210 | | 2 | 210 | 210 | | | d) | denser medium The transversion $E_z \neq 0, H_z$ | ım wi
se ele | th hig | h refr
(TE) v | active
vave | e inde
exists | x, the | n it is | rega | | | | | | | 210 | e) | c) $E_z = 0, H_z$
In spontaneous transition to a a) Higher energy | us en
state | e with | | light | sour | $\neq 0, R$ set in a term to the end of en | an exc | | state | under | goes the | е | 210 | | | f)
g) | Pho
What does th
a) Light Abso | hotoo
todio
e acr
rptior | de.
onym
n by S | creat
LASI
Stimula | e extr
ER st
ated l | emely
and fo
Emiss | or?
sion of | electr
f Radi | ation | | comp | ared to | | | | 210 | h) | b) Light Ampl
c) Light Altera
d. None of the
Bandwidth-le | ation l
e abo | by Sti
ve | mulat | ed E | missio | on of I | Radia | tion | | city of | | 210 | 210 | | 210 | i) | fiber. Which among inhomogeneit a) Extrusion (b) Increase in c) Removal o | ty's fo
Contro
relat
f impo | or Mie
ol
tive R | scatt | ering
erend | reduc
ce | ction? | | | 210 | | | 210 | 210 | | | j) | d) All of the a
Which color of
a) Yellow | | | the sl | | st wav | - | gth ?
:) Red | I | | | d) Gree | n | | | Q2 | a)
b)
c)
d) | Answer the final Enlist various Differentiate by Write differentiate A multimode difference of refractive independent of the number of Compare the | block
between
t app
step in
1.5%
exis 1
f guid | ks of
een pl
lication
index
is of
.48, of
ledmo | optications of fiber operates of the stimates | al fibe
and g
step
with a
ing a
ate: (a | r com
roup v
Index
a core
at a v
a) the | munio
veloci
diber
diam
wavel
norm | cation
ty.
and (
neter of
ength
nalized | System
Grade
of 80
of | 210
ed Ind
m and
0.85 | d a re
µm. | ers.
lative in | core | (2 x 10) | | | g) | Give the major reasons which have led to the development of optical amplifiers. | | |-----------|----|---|------| | | h) | With a schematic sketch compare the different fiber types based on the following points (i) index profile (ii) fiber cross section and ray paths (iii) typical | | | 210 | i) | dimensions. What is the material used for the fabrication of sources having operating wavelength in the range of 0.8-0.9µm? | | | | j) | What do you understand by dispersion shifted fibers? | | | Q3 | a) | How is the normalized frequency (V) parameter is related to the radius of the core in optical fiber? What is the value for a single mode to exist? How is it related to the number of modes (M) in a multimode fiber when (M) is quite large? | (10) | | 210 | b) | List various special features of offered by optical fiber communication system over conventional communication system. | (5) | | Q4 | a) | A silica optical fiber with a core diameter large enough to be considered by ray theoryanalysis has a core refractive index of 1.50 and a cladding refractive index of 1.47. | (10) | | 210 | b) | Determine: (a) the critical angle at the core—cladding interface; (b) the NA for the fiber; (c) the acceptance angle in air for the fiber. What are the factors responsible for optical power loss on fiber optic communication? | (5) | | Q5 | a) | Consider graded-index fibers having graded index profiles α =2.0, cladding refractive indices η_2 =1.478, wavelength λ =1550 nm, radius of curvature R= 2.5 cm and index differences Δ =0.01.Then compare the ratio of the effective number of modes to the total number of modes (M_{eff}/M_{∞}) when a=25µm and | (10) | | 210 | b) | 50µm. 210 210 210 210 210 210 210 210 210 210 | (5) | | Q6 | a) | Describe the two main SOA types and indicate their distinguishing features with neat figures. | (10) | | | b) | A photodiode has a quantum efficiency of 65% when photons of energy 1.5×10^{-19} Jare incident upon it. | (5) | | 210 | | (a) At what wavelength is the photodiode operating? (b) Calculate the incident optical power required to obtain a photocurrent of 2.5 μA when the photodiode is operating as described above. | | | Q7 | a) | An analog optical fiber communication system requires an SNR of 40 dB at the
detector with a post-detection bandwidth of 30 MHz. Calculate the
minimum optical
power required at the detector if it is operating at a
wavelength of 0.9 μ m with a
quantum efficiency of 70%. State any assumptions made. | (10) | | | b) | With a schematic diagram explain the structure of Fabry-Perot resonator cavity. Define resonant frequency of the cavity. | (5) | | Q8 | a) | What are optoelectronic modulators? Explain the principle of operation for | (10) | | 210 | b) | acousto-optic modulator with neat figures listing their limitations. What are semiconductor materials chosen to fabricate optical sources? How is the wave length of emission related to the mole-fraction in a heterojunction semiconducting material used to fabricate optical sources? | (5) | | Q9 | a) | Discuss the working principle of PIN photo detector with physical structure, | (10) | | | b) | equivalent circuit, field distribution and energy diagram. Write brief explanatory note on Rayleigh scattering losses. | (5) | | | | | | How emission and absorption of radiation for LASER diode take place?