| Tota | al Nu | mber of Page | s: 03 | | | | B.Tech | |------|-------|---|--|---|---|-----------------------------|-------------------------| | 210 | swer | Question No. | Tin
Max
Questi
1 and 2 which | eaction E
NCH : CH
ne : 3 Hou
Marks : 1
on Code :
are comp | ngineer
EM
rs
100
B232
sulsory a | ing
and any foui | r from the rest. | | 210 | Ass | sume suitable | res in the righ
notations and
swer all parts | d any miss | ing data | a wherever i | | | 1. | (a) | In reaction 3 | ollowing quest
BA→2.5B→1.50
and appearan | C, the rela | | | (2x10)
rate of | | 210 | | i. 3(-ı
ii. ²¹⁰ 2(r _c
iii. (-r _B | $(r_A) = 2.5(r_B)$
$(r_C) = (-r_A)^{-210}$
$(r_C) = (r_C)$
the of these | | 210 | 210 | 210 | | | (b) | |) →2.5D + inert
5 | . Fractional | volume | change $(arepsilon_{A})$ is | 8 | | 210 | (c) | For which ord decay? i. 0 ii. 1 iii. 2 iv1 | ler reaction, th | ne reactant | consum | ption is²expo | onential ²¹⁰ | | 210 | (d) | First order rate i. mo ii. 210 1/s iii. lit.s | ec/mole | | 210 | 210 | 210 | | | (e) | i. 0
ii. 1
iii. ∞ | mber for PFR is | 5 | | | | | 210 | (f) | For all +ve ord
i. PFI
ii. MF
iii. Bot | R | best flow re | eactor is | 210 | 210 | | | | | | | | | | 3. 4. | 210 | | 210 | 210 | 210 | 210 | 210 | 210 | |-----|-------------------|---|---------------------------|----------------------------|---|-------------------|-----| | 6. | (a) | In a certain kinet temperature in th | (10) | | | | | | | | K×10 ³ (min ⁻¹) | 4.15 26.8 | | 246 | 7 | | | | | T (K) | 573 600 | | 635 | | | | 210 | (b) | Evaluate the active Explain differential elementary reactive. | ₂₁₀ (5) | 210 | | | | | 7. | | For $A \xrightarrow{K_1} R \xrightarrow{K_2} S$, unimolecular type | (15) | | | | | | 8. | | term.Prove that it | can be used as | either PFR or MF | or in concentration
Rboth analytically | (15) | | | 210 | | and graphically. | 210 | 210 | 210 | 210 | 210 | | 9. | (a)
(b)
(c) | Discuss about int
Mention the adva
Discuss about rate | ntages and disa | ethod.
dvantages of MFF | ₹. | (5)
(5)
(5) | | | 210 | | 210 | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | 210 | | 210 | | 210 | 210 | 210 | 210 | 210 | 210 |