Tota	al Nu	mber of Page	s: 03				B.Tech
210	swer	Question No.	Tin Max Questi 1 and 2 which	eaction E NCH : CH ne : 3 Hou Marks : 1 on Code : are comp	ngineer EM rs 100 B232 sulsory a	ing and any foui	r from the rest.
210	Ass	sume suitable	res in the righ notations and swer all parts	d any miss	ing data	a wherever i	
1.	(a)	In reaction 3	ollowing quest BA→2.5B→1.50 and appearan	C, the rela			(2x10) rate of
210		i. 3(-ı ii. ²¹⁰ 2(r _c iii. (-r _B	$(r_A) = 2.5(r_B)$ $(r_C) = (-r_A)^{-210}$ $(r_C) = (r_C)$ the of these		210	210	210
	(b)) →2.5D + inert 5	. Fractional	volume	change $(arepsilon_{A})$ is	8
210	(c)	For which ord decay? i. 0 ii. 1 iii. 2 iv1	ler reaction, th	ne reactant	consum	ption is²expo	onential ²¹⁰
210	(d)	First order rate i. mo ii. 210 1/s iii. lit.s	ec/mole		210	210	210
	(e)	i. 0 ii. 1 iii. ∞	mber for PFR is	5			
210	(f)	For all +ve ord i. PFI ii. MF iii. Bot	R	best flow re	eactor is	210	210

3.

4.

210		210	210	210	210	210	210
6.	(a)	In a certain kinet temperature in th	(10)				
		K×10 ³ (min ⁻¹)	4.15 26.8		246	7	
		T (K)	573 600		635		
210	(b)	Evaluate the active Explain differential elementary reactive.	₂₁₀ (5)	210			
7.		For $A \xrightarrow{K_1} R \xrightarrow{K_2} S$, unimolecular type	(15)				
8.		term.Prove that it	can be used as	either PFR or MF	or in concentration Rboth analytically	(15)	
210		and graphically.	210	210	210	210	210
9.	(a) (b) (c)	Discuss about int Mention the adva Discuss about rate	ntages and disa	ethod. dvantages of MFF	₹.	(5) (5) (5)	
210		210	210	210	210	210	210
210		210	210	210	210	210	210
210		210	210	210	210	210	210
210		210	210	210	210	210	210
210		210	210	210	210	210	210