Registration No.:					

Total number of printed pages - 3

B. Tech

PCMT 4301

Fifth Semester Examination – 2013 PHASE TRANSFORMATIONS AND HEAT TREATMENT

BRANCH: MM, MME

QUESTION CODE: C-405

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is chemical potential? Show how the chemical potentials can be obtained from the free energy composition curve of an ideal binary solution.
- (b) Show and explain the condition for equilibrium in a beterogeneous system containing two phases.
- (c) Calculate the undercooling that is required for liquid to crystal transformation in tin. The enthalpy of fusion for tin is 0.42 GJm⁻³ (14 cal/gm). Appreciable nucleation occurs when the free energy of the critical nucleus is 1.5 × 10⁻¹⁹ J. The liquid-crystal interfacial energy is 0.055 Jm⁻². The melting temperature of tin is 232°C.
- (d) Calculate the critical radius of the copper nucleus during solidification of liquid copper at 983°C. The enthalpy of fusion of copper is 1.88 GJm⁻³ (50 cal/gm). The liquid-crystal interfacial energy is J.144Jm⁻². The melting temperature of copper is 1083°C.
- (e) What are the basic processes taking place during recovery?
- (f) How do the dissolved impurities in a deformed metal influence the recrystallization kinetics?
- (g) Distinguish between lath and plate martensite.
- (h) Calculate the degrees of freedom in the ($\alpha + \gamma$) region of Fe-Fe₃C system.
- (i) What factors influence the Critical Cooling Rate and the position of the TTT curve of a steel?

- (j) How do the alloying elements in steel influence the eutectoid temperature and the eutectoid composition?
- 2 (a) Derive and explain the expression for the molar Gibbs free energy as a function of composition of a regular binary solution by using the quasichemical approach. Show and explain through suitable diagrams the Gibbs free energy change on mixing a regular binary solution for different values of ΔH_{mix} (when ΔH_{mix} < 0 and when ΔH_{mix} > 0) and temperature. 5
 - Consider a one-dimensional diffusion couple problem, where two infinitely long bars of different but uniform concentrations, say C_2 and C_1 ($C_2 > C_1$), respectively, are joined end to end. Diffusion is then carried out for a specific period of time at a higher temperature. Give the boundary conditions in this problem. When coefficient of diffusion, D is independent of concentration, derive the expression for C (x, t) and graphically show the concentration of solute as a function of the distance from the interface, x at different values of time, t.
- 3. (a) Give the total free energy change, ΔG accompanying the formation of a spherical new phase particle by homogeneous nucleation. Graphically show and explain the variation of the Gult by change, ΔG, during homogeneous nucleation, as a function of particle radius, r, at different temperatures. Explain critical free energy of nucleation and critical radius.
 - (b) Explain the nucleation of the new phase particle, β , at the grain boundary between two α grains. Derive the free energy change during this type of heterogeneous nucleation, ΔG_{het} . Give the critical values of Gibbs free energy of heterogeneous nucleation, ΔG^*_{het} and the rate of heterogeneous nucleation, I_{gb} .
- (a) Calculate the homogeneous nucleation rate in liquid copper at undercoolings of 180K and 200K using the following data and give your observations: Latent heat of fusion per unit volume, L= 1.88 × 10⁹ Jm⁻³,

Melting temperature of copper, $T_m = 1356 K$,

Solid-liquid interfacial energy, $\gamma_{SL} = 0.177 \text{J m}^{-2}$,

The frequency with which any one of the atoms in the parent phase facing the critical sized particle can cross the interface to join the product particle, $V' = 10^{11} \, \text{s}^{-1}$,

Number of atoms per unit volume in the liquid, $N_t = 6 \times 10^{28}$ atoms m⁻³, Boltzmann's constant, $k = 1.38 \times 10 \times 10^{-23}$ JK⁻¹

5

- (b) Explain diffusion controlled growth during the continuous precipitation of β phase particles from a supersaturated solid solution of α in a binary system of A and B. Show the concentration of B atoms as a function of distance during continuous precipitation of β . Derive a general expression for the growth rate of β particles. For spherical particles, how does the growth rate, U, and the particle size, r, vary with time, t?
- (a) Draw the Iron-Iron carbide phase diagram and label the important phase fields, temperatures and compositions. State the invariant reactions occurring in the system.
 - (b) Draw and explain the microstructures of a hypoeutectoid steel, a eutectoid steel and a hypereutectoid steel that have been cooled slowly to room temperature.
 - Calculate the fractions of proediction of proedicti
- 6. (a) Explain the driving force for particle deterning and the interaction between neighbouring precipitate particles using the Thomson-Freundlich equation and the coarsening kinetics using Greenwood's Model.
 - (b) Explain the mechanism and the kinetics of growth during pearlitic transformations.
- 7. (a) Draw the T-T-T diagram of eutectoid steel and label the phase fields. Label the time—temperature paths to produce the following microstructures: 5
 - (i) pearlite,
 - (ii) pearlite and martensite
 - (iii) bainite and
 - (iv) martensite
 - (b) Explain the characteristics of martensitic transformations.

5

8. Write short notes on any two:

5×2

- (a) Carburizing
- (b) Jominy end quench test
- (c) Age hardening of Al-Cu alloys
- (d) Martempering and austempering.