					PCMT 4302		
Total number of pri				B. Tech			
Registration No. :							

Fifth Semester Examination – 2013

DEFORMATION BEHAVIOUR OF MATERIALS

BRANCH: MM, MME

QUESTION CODE: C-343

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) How is the maximum shear stress related to the principal normal stresses in a body subjected to a plane stress situation?
- (b) Define true strain in terms of engineering strain.
- (c) What is the role of stacking fault energy on cross-slip?
- (d) Prove that the c/a ratio for ideal packing in the case of hexagonal closepacked structure is 1.633.
- (e) Consider a Fe-C steel bar first strained plastically by loading to a point beyond the yield stress, then unloaded, and then reloaded several weeks later or given a moderate temperature aging treatment prior to being reloaded. What would be the stress-strain response of the reloaded steel bar?
- (f) State briefly how the degree of strengthening resulting from second phase particles depends on the distribution of particles in the ductile matrix.
- (g) What are the slip systems in FCC structure? And how many slip systems are there in FCC lattice.
- (h) What is critical resolved shear stress for slip? How does it depend on composition?

- (i) When plastic deformation (slip) in one direction is followed by deformation (slip) in the opposite direction then how does it affect the stress strain curve and the yield stress?
- (j) What is Burgers vector? How is the Burgers vector of an edge dislocation determined?
- (a) A tensile specimen having 2.5 cm length and 0.25 cm diameter is stretched uniformly to 3 cm, where it begins to neck under a load of 1400 N. Calculate the engineering stress, true stress, engineering strain and true strain at necking.
 - (b) Develop the elastic stress-strain relations for a three-dimensional state of stress considering a unit cube subjected to normal stresses σ_x , σ_y , σ_z and shearing stresses T_{xy} , T_{yz} , T_{yz} , T_{zz} , T
- (a) Explain the Von Mises' and Tresca criteria for predicting the conditions at which plastic yielding begins when a material is subjected to any possible combination of stresses.
 - (b) Find the principal stresses and the orientation of the axes of principal stress with the x, y axes for the following situation. $\sigma_x = 340$ MPa, $\sigma_y = 34$ MPa and $T_{xy} = -55$ MPa. Construct a Mohr's circle of stress for the above given plane-stress condition.
- (a) Explain slip by dislocation movement and the importance of dislocation width.
 - (b) Explain deformation by twinning with suitable sketches. How twinning differs from slip? What are the different types of twins and under what conditions are they produced?
- 5. (a) Consider the following face centered cubic dislocation reaction:

$$\left(\frac{a}{2}\right)\left[110\right] \rightarrow \left(\frac{a}{6}\right) + \left[21\overline{1}\right] + \left(\frac{a}{6}\right)\left[121\right]$$

Prove that the above dislocation dissociation reaction will occur. What kind of dislocations are the $\left(\frac{a}{6}\right)(121)$? What kind of crystal imperfection results from this dislocation reaction? What determines the distance of separation of the $\left(\frac{a}{6}\right)[211]$ and the $\left(\frac{a}{6}\right)[121]$ dislocations?

- (b) Explain through neat sketches the multiplication of dislocations by the operation of Frank Read sources.
- 6. (a) Explain yield point phenomenon and discuss why some metals show a sharp transition from elastic to plastic deformation.
 - (b) Explain with the help of neat sketches the intersection of two edge dislocations with Burgers vector at right angles to each other.
- 7. (a) Explain Griffith theory of brittle fracture and derive the expression for fracture stress under plane stress and plane strain conditions. 5
 - (b) Draw the engineering stress-strain curve of a typical metal and explain the significant points on the curve. Make a comparison of the stress-strain curves of a high carbon spring steel and a structural steel.
- 8. Write short notes on any two of the following:

ENTRA

5×2

- (a) Stacking faults.
- (b) Edge and Screw dislocations
- (c) Dislocation ctimb
- (d) Strengthening from grain boundaries.