Registration No. :										
Total number of printed pages – 3										B. Tech
,										PEEL 5302

Fifth Semester Examination – 2013
RENEWABLE ENERGY SYSTEMS

BRANCH: ELECTRICAL, EEE

QUESTION CODE: C-424

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is cogeneration? Explain with an example.
- (b) What is dispersed generation and what is its importance?
- (c) Define solar constant and declination.
- (d) For a parabolic collector of length 2 m, the angle of acceptance is 15°, find the concentration ratio of the collector.
- (e) What is fill factor? What is its significance in selecting a PV module?
- (f) What is dark saturation current in a semiconductor PV cell and mention its significance.
- (g) Draw and label an airfoil of the blade of a WECS.
- (h) Explain the design specialty of an air foil to produce a higher lift force.
- (i) What is pyrolysis and what type of biomass conversion technology it comes under?
- (j) What is the need of a hybrid system and give examples of various type of hybrid combinations.

- (a) How the various conventional energy generations have affected the environment and the terrestrial ecology? Discuss, in detail.
 - (b) Draw the equivalent circuit for a semiconductor PV cell, signify the presence of each component in it and derive the equation for $V_{\rm oc}$.
- 3. (a) How the quality of a PV cell is measured? What are the limitations to the efficiency of a PV cell?
 5
 - (b) A solar cell (0.9 cm²) receives solar radiation with photons of 1.8 eV energy having an intensity of 0.9 mW/cm². Measurements show open-circuit voltage of 0.6 V/cm², short-circuit current of 10 mA/cm², and the maximum current is 50% of the short-circuit current. The efficiency of cell is 25%. Calculate the maximum voltage that the cell can give and find the fill factor.

5

5

- (a) What is the maximum power point of a PV cell and how the tracking of the maximum power point is done? Explain, in detail.
 - (b) Estimate τ_a, τ_p, and τ for a glass cover system with given data: Angle of incidence = 10°; No. of covers = 4; Thickness of each cover = 3 mm; Refractive index of glass relative to air = 1.52; Extinction coefficient of glass = 15 m⁻¹.
- (a) Explain the aerodynamics operation in a wind turbine? Taking a Darrius rotor justify the resultant rotational force developed on the blade is unidirectional. Use suitable vector diagrams to explain.
 - (b) Wind speed is 10 m/s at the standard atmospheric pressure. Calculate:
 - (i) The total power in wind stream.
 - (ii) The total power produced by a turbine of 100 m diameter with an efficiency of 40%.

Given that: Air density = 1.226 J/kg.K/m³.

6. (a) What is Betz limit for a WECS? Establish a relation between C_{pmax} , C_{tmax} and TSR.

PEEL 5302 2 Contd.

- (b) Design the rotor radius for multiblade wind turbine that operates in a wind speed of 3 kmph to pump water at a rate of 6 m³/h with it a lift of 6 m. Also calculate the angular velocity of the rotor. Given that: water density = 1000 kg/m^3 , g = 9.8 m/s, water pump efficiency = 50%, efficiency of rotor to pump = 80%, $C_p = 0.3$, $\lambda = 1.0$, air density = 1.2 kg/m^3 .
- (a) What is gasification? What are the chemical reactions takes place during gasification? Describe how the down draft type of gasifier operates with its complete labelled diagram.
 - (b) Calculate the volume of a fixed doe type biogas digester for output of two cows. Also calculate the thermal power available from biogas. Use the following data:

PAL LIB

T, GUN

Retention period = 40 days

Dry matter produced = 2 kg/day/cow

Biogas yield = 0.22 m³/kg of dry matter

Percentage of dry matter in cow dung = 18%

Density of slurry = 1090 kg/m³

Burner efficiency = 60%

Heating value of biogas = 23MJ/m³

8. Write short notes on any two of the following:

(a) Performance analysis of Compound parabolic Concentrator

- (b). Wind-Pv hybrid system
- (c) Classification of solar cells
- (d) Peltier Cooling.

5×2