Total number of printed pages - 4

B. Tech

PCEC 4303

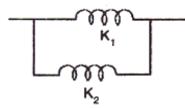
Fifth Semester Examination – 2013 CONTROL SYSTEM ENGINEERING

BRANCH: ELECTRICAL, EEE

QUESTION CODE: C-336

Full Marks - 70

Time: 3 Hours


Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

(a) Determine the equivalent spring constant for the given system.

(b) Determine the transfer function of the system described by

$$\frac{d^2y}{dt^2} + 3\frac{d^2y}{dt^2} + \frac{dy}{dt} = \frac{du}{dt} + 2u$$

(c) Say with reasons, which of the following differential equations is timeinvariant.

(i)
$$\left(\frac{1}{t+1}\right)d^2y / dt^2 + \left(\frac{1}{t+1}\right)y = 0$$

(ii)
$$\frac{d}{dt}(t^2y)=0$$

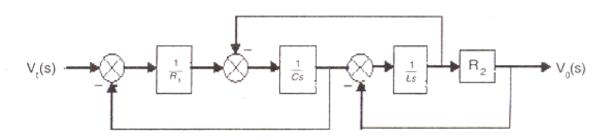
(iii)
$$\frac{d^2y}{dt^2} + (\cos t)y = 0$$

(d) The closed-loop transfer function of a control system is given by

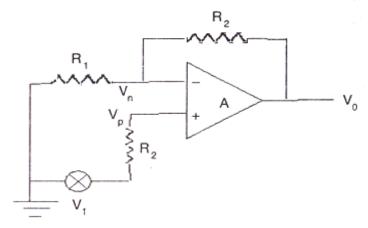
$$\frac{C(s)}{R(s)} = \frac{1}{1+s}$$

For the input r(t) = sint, determine the steady state response c(t).

(e) The open-loop transfer function of a feedback control system is


$$\frac{K}{s(s^2+3s+6)}$$

Determine the breakaway point(s) of the root locus plot if it exists.


- (f) Compare between the gain and phase margins of two closed-loop systems having loop transfer functions G(s) H(s) and e^{-s}G(s) H(s).
- (g) The polar plot of $G(s) = \frac{10}{s(s+1)^2}$ intersects the real axis at $\omega = \omega_0$.

 Determine the real part and ω_0 .
- (h) Write down the criteria to be fulfilled by a point to be on the root locus. Give reasons for your answer.
- reasons for your answer.

 (i) A unity feedback system has the forward path transfer function $(s)H(s)=\frac{16}{s(s+4)}$. What are the resonant frequency and damped natural frequency of the closed-loop frequency response system in rad/sec?
- (j) Describe the effects of Derivative and Integral control actions.
- 2. (a) For the system shown in figure, find the transfer function $V_0(s)/V_t(s)$ from its signal flow graph.

(b) Enumerate the effect of negative feedback on system sensitivity, bandwidth and speed of response.
5 Find the transfer function of the non-inverting operational amplifier shown in figure.

4. The open-loop transfer function of a unity negative feedback system is

$$G(s) = \frac{K}{s(as+1)}$$

By what factor is the gain K to be changed so that the peak overshoot is reduced from 25% to 16%? Also, find the factor by which the constant also to be changed so as to reduce the damping ratio from 0.75 to 6.

5. (a) A unity feedback control system has the closed purp transfer function

$$T(s) = \frac{as + K}{s^2 + bs + K}$$

Show that the steady state error is zero for a unit ramp input, if a = b. 5

(b) The closed loop transfer function of a system is

$$\frac{C(s)}{R(s)} = \frac{100}{\left(s^6 + 3s^5 + 8s^4 + 18s^2 + 20s^2 + 24s + 16\right)}$$

Determine the number of poles on the RHP, LHP and on the $j_{(i)}$ axis and comment on the stability of the system.

6. (a) The open-loop transfer function of a system is given by

$$G(s)H(s)=\frac{k}{(s+1)^2}$$

Show the branches of the root locus, break-away and break-in points and imaginary axis cross-over points.

- (b) Define the following terms:
 - (i) Nyquist Stability criteria
 - (ii) / Gain margin
 - (iii) Phase margin

7. (a) Sketch the approximate Bode Plot for
$$G(s) = \frac{K(1+5s)}{s^2(1+0.5s)}$$
.

(b) Draw Polar Plot for
$$G(s) = \frac{1}{s(1+sT)}$$
.

8. Write short notes on any two of the following:

5×2

5

- (a) Gear Train
- (b) AC Servomotor
- (c) Error Constants
- (d) Constant M- circles.