Registration No.:					

Total number of printed pages - 3

B. Tech PCCH 4303

Fifth Semester Examination – 2013 PROCESS EQUIPMENT DESIGN

BRANCH: CHEM

QUESTION CODE: C-415

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any two from the rest. The figures in the right-hand margin indicate marks. Assume suitable notations and any missing data wherever necessary.

FOLLOWING BOOKS ARE ALLOWED:

- 1. PROCESS EQUIPMENT DESIGN- M V JOSHI
- CHEMICAL ENGINEERING, VOLUME VI- COULSON and RICHARDSON 2.
- 3. INDIAN STANDARD CODE (IS: 803-1976)
- 4. STEAM TABLE
- 5. DATA TABLE (APPENDIX - PROCESS HEAT TRANSFER-D Q KERN) TRAL LIBRAD
- 1. Answer the following questions:

2×10

- (a) How to obtain equilibrium data from relative volatility
- Reflux is the deciding factor for number of plates to be used in a distillation (b) column. Explain.
- Why partial condenser is equivalent to one theoretical stage in distillation operation?
- Is the corrosion allowance necessary? If no then when and if yes how much?
- What is the role of baffles in a shell and tube heat exchanger?
- (f) Define "pass" and "partition" in a shell and tube heat exchanger.
- Why LMTD correction factor F_{τ} is used in multi-pass heat exchangers? (g)
- Which materials are used for cladding and bonding for low cost materials? (h)

- (i) Which equipment is known as condenser-cooler?
- (i) How wall thickness changes w.r.t. BWG number?
- Design a storage vessel with column supported roof. 2. (a)

Data:

Tank diameter

19

Tank height

25

Sp. Gr. of liquid

1.2

Material

AL LIBRARY Permissible

Carbon Steel (structural) 142 N/mm²

Density

(b)

Modulus of elasticity

 $\times 10^{5}$

Design: (a) Shell, (b) Bottom, (c) Column supported roof.

15

Draw a neat diagram of storage vessel.

10

- 3. A feed mixture containing 55 mol % benzene and rest toluene is to be separated into an overhead product containing 98 mol % benzene and a residue of 2 mol % benzene at 1 std atm. Feed is saturated vapor and is admitted to the column at the rate of 4000 kg/hr. A reflux ratio of 2.5 times of minimum is to be used. Boiling point of benzene and toluene are 353 K and 383 K respectively. Relative volatility for benzene-toluene system is 2.6. Overall efficiency of the tower is 75%. Vapor velocity can be taken as 1 m/sec.
 - Design a suitable bubble cap tray distillation column.

15

- Draw neat sketch of distillation column showing all necessary auxiliary (b) equipments. 10
- 4. Design a vertical tube single effect evaporator to concentrate 7000 kg/hr of 5% (by weight) caustic soda solution to 30% (by weight). Steam is available at 1.6 kg/cm². The pressure to be maintained in the vapor space of the evaporator is 500 mm Hg. The overall heat transfer co-efficient may be taken as 2000 Kcal/hr.m².ºC. Boiling point elevation of the solution is 8°C. Enthalpy of the feed and product streams are 82 and 72 Kcal/kg respectively. Tubes of 50 mm OD (45 mm ID) and length of 150 cm are arranged in 75 mm square pitch. 15
 - (b) Draw a neat sketch of vertical tube evaporator with specifications.

2

10

5. (a) Crude oil at the rate of 15050 kg/hr is to be heated from 25°C to 60°C by heat exchange with the bottom product from a distillation unit (both fluids are heavy organics). The product at 13500 kg/hr is to be cooled from 145°C to 105°C. For this purpose 396 tubes with 105°C and BWG number 14 are used in 1.25 in. square pitch. Design a 1-2 shell and tube heat exchanger. What are the both side allowable pressure drop values in N/m²?

Average properties are:

5	Product (outside ', du Crude (inside the				
	the tube), "hot"	tube) "cold"			
C _P , kJ/kg.⁰C	2.15	1.96			
μ, cP	4.9	2.7			
ρ, kg/m³	880	830			
κ, W/m.°C	0.119	0.137			

(b) Draw a neat sketch of 1-2 shell and tube heat exchanger.