Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B. Tech PEBT 5304

Fifth Semester Examination – 2013 BIOCHEMICAL REACTION ENGINEERING

BRANCH: BIOTECH

QUESTION CODE: C-323

Full Marks - 70

Time: 3 Hours

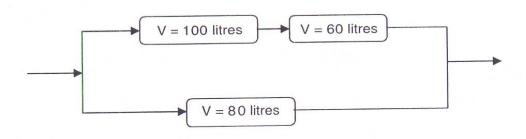
Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Differentiate between space time and space velocity.
- (b) Write the difference between integral and differential method of data analysis.
- (c) What is enzyme immobilization? Briefly describe the principles of two methods of immobilization.
- (d) What are the advantages of fluidized bed reactors over packed bed reactors?
- (e) What do you mean by psychometric chart? Write the use of psychometric chart.
- (f) Show the relation between temperature and rate constant for high and low activation energies.
- (g) What is critical dilution rate? What happens to specific growth rate at critical dilution?
- (h) On doubling the concentration of reactant, the rate of reaction triples. Find the reaction order.
- (i) Consider an isothermal gas-phase reaction A \rightarrow 4R. Calculate ε_A with 50% inert present at the start of the reaction.
- (j) For a reaction E + S \leftrightarrow ES \rightarrow E + P, the $k_1 = 1 \times 10^{-7} \,\text{mol}^{-1} \text{sec}^{-1}$, $k_{-1} = 10^2 \,\text{sec}^{-1}$, $k_2 = 3 \times 10^2 \,\text{sec}^{-1}$. Calculate k_m .


- 2. (a) Derive an expression for velocity of an enzyme catalyzed reaction under 'uncompetitive inhibition'. Assume steady state conditions.
 - (b) What are the drawbacks of linearized forms of Michaelis-Menten equation?
- 3. (a) Derive the performance equation of a PFR operating in ideal condition. 5
- (b) Derive the expression for Recycle reactor.
 Discuss, in detail, the integral method of data analysis for irreversible unimolecular first order reaction and irreversible bimolecular type second order reaction.
- 5. (a) A microorganism contains an enzyme that hydrolyzes glucose-6-sulfate (S). The enzyme has km of 6.7×10^{-1} µM, V_{max} of 300 nmole/L.min. Galactose-6-sulfate is a competitive inhibitor (I). At 10^{-5} M galactose-6-sulfate and 2×10^{-5} M glucose-6-sulfate, velocity was 1.5 nmole/L.min. Find K_i for galactose-6-sulfate.
 - (b) For an enzyme catalyzed reaction, the initial rate V_0 was determined at each initial concentration of substrate S_0 .

The following data were generated:

$S_0(\mu M/L)$	V _o (μM/L)
1	2.5
5	9.8
10	20.2
20	31.7
30	41.2
50	50.2
100 KRALLIBRA	60.1
500/8	74.3
100 KRALLIBRA	60.1

Determine K_m and V_{max} from Eadie Hofstee plot.

6. (a) The reactor setup (shown in Figure) consists of three plug flow reactors in two parallel branches Branch D has a reactor of volume 100 litres followed by a reactor of volume 60 litres. Branch E has a reactor of volume 80 litres. What fraction of the feed should go to branch D?

An aqueous feed of A and B (400 litre/min, 100 mmol A/litre, 200 mmol B/litre) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by

$$A + B \rightarrow R$$
, $-r_A = 200 C_A C_B \text{ mol/litre .min}$

Find the volume of reactor needed for 99.9% conversion of A to product.

5

- Derive the equation for analysis of data by integral method for a 2nd order 7. reaction operating in varying volume batch reactor. 5
 - The conversion of cyclopropane to propene in the gas phase is a first-order reaction with a rate constant of $6.7 \times 10^{-4} \, \text{s}^{-1}$ at 500° C. 5
 - If the initial concentration of cyclopropane was 0.25 M, what is the concentration after 8.8 min?
 - (ii) How long (in minutes) will it take for the concentration of cyclopropane to decrease from 0.25 M to 0.15 M?
- Answer any two of the following: 8.

5×2

- (a) Write a short note on autocatalytic reaction.
- FRAL LIBA Write short note on Monod's model of growth kinetics
- Derive a performance equation for reactor containing porous catalyst (c) particle.
- Write a note on size comparison between batch, mixed flow and plug flow (d) reactors for a given duty.