Registration No.:			33								
-------------------	--	--	----	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PECI 5303

Fifth Semester (Back/Special) Examination – 2013 SURVEYING - II

BRANCH : CIVIL

QUESTION CODE: D 325

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) State the basic principle of tacheometry.
- (b) What do you mean by analyatic lens?
- (c) What is the relationship between degree and radius of a curve ? Sketch a reverse curve.
- (d) What is transition curve? When and which it used
- (e) What is a satellite station?
- (f) What do you mean by phase of a signal?
- (g) What do you mean by weight of an observation ?
- (h) What do you mean by tilt and tip in photogrammetry?
- (i) Enumerate the errors in EDM.
- (j) How surveying by using total station is advantageous over traditional surveying?
- To determine the elevation of a point P, a tacheometer was set up at a station A
 and observations were made on a staff held vertical at P. As a check, the
 instrument was set up at another point B and observations were taken to a staff
 held at P. The RL of the BM was 235.455. The instrument constants were 100 and
 0.3. Determine the RL of P from the following data recorded (Table 1).

Table-1

Instrument at	Staff at	Vertical angle	Hai	r readi	Readings at BM 1.75	
A P		3°45'	2.235	2.795		
В	Р	2°30'	0.945	1.490	2.035	2.25

- A simple circular curve is 330 m radius. Calculate the offsets from tangent 3. to locate points on the curve at 15 m intervals for a distance of 60 m from the tangent points. Give the radial as well as perpendicular offsets. What are their approximate values?
 - (b) A railway curve of 1500 m radius is to be set out to connect two tangents. The design speed is 120 kmph. Find a suitable length of transition, and the necessary shift of the circular curve.
- The following observations were made at a satellite station S: the direction of the 4. true station P was 0° 00' 00"; the direction of M was 70° 36' 40"; the direction of N was 145° 24' 20"; and the direction of O was 212° 42' 10". Given that the distance PS was 25.24 m and PM, PN and PO were respectively 7567 m, 8435 m and 6694m, reduce the observed angles to the true station.
- Find the most probable values of the angles P, Q and R of a triangle PQR from the 5. following measurements: P = 70° 31' 18.6" (weight = 3), Q = 61° 12' 11.8" (weight = 2) and R = 48° 16' 36.6"(weight = 4), P + Q = 131° 43' 34.6" (weight = 2).
- (a) Explain how the coordinates of a point are worked out from terrestrial 6. photographs.
 - (b) A 1-km-long line on the ground with an average elevation of 685 m measures 11.35 m in a photograph. The focal length of the lens is 210 mm. Find the scale of the photograph for an area having an average elevation of 900 m.
- field works are (a) What are the basic features of a total station? 7. 5 carried out using total stations.
 - Explain the 'batter board method' of setting out a large public building. 2×5
- Write brief notes on any five of the following: 8.
 - Errors in tacheometry (a)
 - Vertical curve with all its features (b)
 - Well conditioned triangle (c)
 - Most probable value (d)
 - Overlaps in photogrammetry (e)
 - Basic principles of EDM (f)
 - Reverse running profile (g)
 - Heliotrope. (h)