Total number of printed pages - 3

B. Tech

PCBM 4302

Fifth Semester (Special) Examination – 2013 SIGNALS AND SYSTEMS

BRANCH: AEIE, BIOMED, CSE, EC, ETC, IEE, IT

QUESTION CODE: D 315

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define convolution of two signals. Write the expression or convolution expression of two discrete signals.
- (b) What is causal signal and causal system?
- (c) Find the circular convolution of the signal $X(n)=\{1,-i,1,-1\}$ and $Y(n)=\{1,0,1,i\}$
- (d) What is BIBO stability and write the condition for LTI system?
- (e) State and derive the time reversal property of z-transform.
- (f) State the interconnection of discrete time system.
- (g) What is twiddle factor?
- (h) State initial value theorem and final value theorem.
- State complex conjugate property of DFT.
- (j) y(n) = -n is a causal signal or not? Justify.

Registration No.:						
Total number of printed pages – 3						в. 7

Tech

PCBM 4302

Fifth Semester (Special) Examination - 2013 SIGNALS AND SYSTEMS

BRANCH: AEIE, BIOMED, CSE, EC, ETC, IEE, IT

QUESTION CODE: D 315

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

Define convolution of two signals. Write the expression for convolution (a) expression of two discrete signals.

ENTRAL LIA

- What is causal signal and causal system? (b)
- Find the circular convolution of the signal (c) $X(n)=\{1,-i,1,-1\}$ and $Y(n)=\{1,0,1,i\}$
- What is BIBO stability and write the condition for LTI system? (d)
- State and derive the time reversal property of z-transform. (e)
- State the interconnection of discrete time system. (f)
- What is twiddle factor? (a)
- State initial value theorem and final value theorem. (h)
- State complex conjugate property of DFT. (i)
- y(n)=-n is a causal signal or not? Justify. (i)

2. (a) Find the inverse z transform of

$$X(z)=1/(1-1.2z^{-1}+0.2z^{-2})$$
 if ROC: 0.2< $|z|<1$

5

- (b) Explain the realization of LTI system by direct form 1 and direct form 2 with example.
- (a) Determine the impulse response of the system described by the difference equation

$$y(n)=0.6(n-1)-0.08Y(n-2)+x(n).$$
 5

- (b) Prove that $r_{yx}(k)=h(-k)^*r_{xx}(k)$ where $r_{yx}(k)=cross$ correlation of output and input signal,
 - $h(k) = impulse response of LTI system and <math>r_{xx}(k) = autocorrelation of input signal.$
- 4. (a) Compute the output of the system having impulse response h(n)={1,i+2, −1,0,−1} for the input

$$x(n)=\{1,0,1\}.$$

- (b) What is normalized cross correlation and what is it's benefit? 5
- 5. (a) Determine the **z-transform** of cos(w₀n)u(n).
 - (b) State and prove the differentiation property of Z-transform. 5
- 6. (a) Calculate the DFT of the discrete sequence $x(n)=\{-1, 2, -1, 1\}$. 5
 - (b) State and prove multiplication of two DFT and circular convolution. 5
- 7. (a) Determine the impulse response of the resultant system. 5

 $h_1(n)=nu(n), h_2(n)=\delta(n-1)$ and $h_3(n)=\delta(n-1)$

(b) Find the output of the system using DFT IDFT method having impulse response

$$h(n)=\{1,2,3\}$$
 for the input $x(n)=\{-1,1,-1\}$.

5

8. Write short notes on any two of the following:

5×2

- (a) One sided Z-transform
- (b) Region of convergence
- (c) Static and Dynamic system
- (d) Properties of DFT.

