Registration No.:				-		
· ·						

Total number of printed pages – 3

B. Tech

HSSM 3302

Fifth Semester (Back / Special) Examination – 2013 OPTIMIZATION IN ENGINEERING

BRANCH: EEE, ELECTRICAL, MINERAL, MINING

QUESTION CODE: D 309

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define a feasible region and a feasible solution.
- (b) What are slack and surplus variables?
- (c) What is degeneracy in a LPP?
- (d) Write the mathematical model of Assignment problem.
- (e) Explain degeneracy in a Transportation problem and how to resolve it.
- (f) Differentiate between source, sink it ansettioment problem.
- (g) What is the difference between mixed integer programming and pure integer programming?
- (h) What are the basic characteristics of a queuing system?
- (i) What is Langrage's multipliers? What is the importance of this?
- (j) Explain Kuhn Tucker condition.

Minimize
$$Z = -6x_1 - 4x_2$$

Subject to $2x_1 + 3x_2 \ge 30$
 $3x_1 + 2x_2 \le 24$
 $x_1 + x_2 \ge 3$,
 $x_1, x_2 \ge 0$.

(b) Solve the following LPP using Big M method.

Minimize
$$Z = 4x_1 + x_2$$

Subject to $3x_1 + x_2 = 50$
 $4x_1 + 3x_2 \ge 24$
 $x_1 + 2x_2 \le 3$
 $x_1 + 2x_2 \le 3$
 $x_1 + x_2 \ge 3$

3. (a Using dual Simplex method solve the following LPP

Maximize
$$\hat{Z} = 5x_1 + 6x_2$$
, $x_1 + x_2 \ge 2$ $4x_1 + x_2 \ge 4$ $x_1, x_2 \ge 0$.

(b) Obtain the dual problem of the following primal LP problem and solve 5

Minimize
$$Z = x_1 + x_2$$

Subject to $2x_1 + 3x_2 + 4x_3 \ge 2$
 $5x_1 + 2x_2 + x_3 = 1$
 $x_1, x_2 \ge 0$

4. (a) Solve the following Transportation problem to maximize the profit

Source/Destination	Α	В	С	D	Supply
1	40	25	22	33	100
2	44	35	30	30	30
3	38	38	28	30	70
Demand	40	70	60	30	

5

6

5

(b) Four machines are available to assign five jobs find the assignment of machines to the job that will result in maximum profit.5

Machines/jobs	Α	В	C	D	E
1	62	78	50	111	82
2	71	84	61	73	59
3	87	92	111	71	81
4	48	64	87	77	80

5. Find the optimum integer solution to the following LPP

$$\label{eq:Z} \begin{array}{ll} \text{Maximize} & Z=4x_1+3x_2\\ \text{subject to} & x_1+2x_2 \leq 4\\ & 2x_1+x_2 \leq 6\\ & x_1 \ , \ x_2 \geq 0. \end{array}$$

6. Solve the following problem using Fibonacci search method for 6 iterations. 10

Minimize $Z = x^3 - 2x - 5e^x$ in the interval (0,25)

7. Maximize $Z = x_1^2 + 2x_2^2 + x_3^2$

Subject to
$$2 x_1 + x_2 + 2x_3 = 30$$

 $x_1, x_2 \ge 0$

using Lagrange method.

8. Write short notes on the following:

5×2

10

- (a) Project gradient method.
- (b) Genetic Algorithm.