Registration No.:											
-------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 3

B. Tech.

Fifth Semester (Back / Special) Examination – 2013 OPTIMIZATION IN ENGINEERING

BRANCH: CSE, FASHION, IT, MM, MME, TEXTILE, MANUFACT

QUESTION CODE: D 299

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) Define basic feasible solution, non degenerate basic feasible solution and degenerate basic feasible solution of a LPP.
- (b) Obtain the dual problem of the following primal LP problem

Maximize
$$z = 8x_1 + x_2$$
 subject to
$$x_1 + 2x_2 + 4x_3 \ge 2$$

$$x_1 + 2x_2 + 4x_3 = 1$$
 and
$$x_1, x_2 \ge 0$$

- (c) What is the condition that the solution of a LPP is unbounded in simplex method?
- (d) What is the importance of revised simplex in comparison to simplex method?
- (e) Write the mathematical model of a Transportation problem .
- (f) Differentiate between Transshipment problem and transportation problem.

- What is Markovian Queing model? (g)
- What is gueue capacity and queue discipline? (h)
- What is a search Techinque to solve the unconstraint optimization? (i)
- Explain Kuhn Tuker condition. (i)
- Solve the following LPP using simplex method 2. (a)

$$Minimize Z = x_1 + 2x_2 + 3x_3$$

Subject to
$$x_1 + 2x_2 + 3x_3 \le 10$$

$$x_1^{}+x_2^{}\leq\,5$$

$$x_1, x_2, x_3 \ge 0$$

(b) Solve the following LPP using Big M method

Maximize
$$Z = 6 x_1 + 4 x_2$$

Subject to
$$2x_1 + 3x_2 \le 30$$

$$3x_1 + 2x_2 \le 24$$

$$x_1 + x_3 \ge 3$$

$$x_1, x_2 \ge 0.$$

Using revised Simplex method solve the following LPP 3.

Maximize
$$Z = x_1 + 2x_2$$
,
subject to $2x_1 + 5x_2 \ge 6$
 $x_1 + x_2 \ge 2$

$$X_1, X_2 \ge 0$$

Solve the following Transportation problem 4.

Source/Destination	D1	D2	D3	D4	Supply
S1	6	1	9	3	70
S2	11	5	2	8	55
S3	10	12	41	7	70
Demand	85	35	50	45	

5

5

10

5

(b) Five men are available to do five different jobs. From the past records, the time (in 2 hours) that each men takes to do each job is known and given in the following table. Find the assignment of men to jobs that will minimize the total time taken.

Job/persons	Α	В	C	D	E
1	30	38	40	28	40
2	40	24	28	21	36
3	41	27	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

Find the optimum integer solution to the following LPP

Maximize $Z = x_1 + 4x_2$

Subject to $2x_1 + 4x_2 \le 7$

$$5x_1 + 3x_2 \le 15$$

 $x_1, x_2 \ge 0$ and integers.

Solve the following problem using golder search method for 5 iterations.

Minimize $Z = 10 + x^3 - 2x - 5e^x$ in the interval (-5,5)

7. Optimize $Z = 2x_1 + 3x_2 - (x_1^2 - x_2^2 - x_3^2)$

Subject to
$$x_1 + x_2 \le 1$$

$$2x_1 + 3x_2 \le 6, x_1, x_2 \ge 0$$

using Kuhn-Tucker condition.

10

8. Write notes on the following:

- (a) Quadratic programming
- (b) Genetic Algorithm.

6.