Registration No.:	
Total number of printed pages – 2	B. Tech
	BCSE 3301

Fifth Semester (Special) Examination – 2013 DESIGN AND ANALYSIS OF ALGORITHMS

BRANCH: CSE, IT

QUESTION CODE: D271

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate marks.

Answer the following questions: 1.

2×10

- What is Big 'Oh' notation ?
- What are the characteristics of an algorithm (b)
- Define Big Omega Notations. (c)
- Define the divide an conquer method, GUN (d)
- (e) Describe the recurrence relation for merge sort.
- (f)Explain the greedy method.
- Define dynamic programming. (q)
- What is class P and NP? (h)
- Prove that 100n+5 ÎO (n2). (i)
- What is the use of Asymptotic Notations? (i)
- (a) Show that the solution of $T(n) = 2T(|\sqrt{n}|) + |gn|$ is O (|gn| | |gn|). 5 2.
 - What is heap property? Illustrate the operation of MAX-HEAPIFY(A,3) on (b) the array A = <27,17,3,16,13,10,1,5,7,12,4,8,9 >. 5

Find all pair shortest path of the given grap G below: 3.

What is Knapsack problem? What are it's constraints? 4. (a)

10

5

5

- Write a recursive activity selector procedure for Activity Selection Problem. (b)
- 5. Prove that Kruskal algorithm is correct. (a) 5
 - Write an Approximation algorithm for Travelling salesman problem. (b) 5
- What is Backtracking? Explain Backtracking on 4-Queen Problem. 6. (a) 5
 - Prove that (b)

If $L_1, L_2 \subseteq \{0.1\}^-$ are tanguages such that $L_1 \leq_p L_2$, then $L_2 \in P$ implies $L_1 \in P$ 5

- Define Dynamic Programming. Find an potimal parenthesization of matrix-chain 7. product, whose sequence of dimensions is < 20,15,5,10,8,12,25 >. 10
- Prove that Hamilton Cycle decision problem in a graph G is NP Class. 8. 5
 - Prove that $PP \subseteq NP$. (b) 5