Registration No.:			

Total number of printed pages - 2

B. Tech

PCMT 4302

Fifth Semester (Back/Special) Examination – 2013 DEFORMATION BEHAVIOUR OF MATERIALS

BRANCH: MM, MME

QUESTION CODE: D 268

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) What is Hall-Petch relation?
- (b) What is the phenomenon of strain hardening?
- (c) What is Schmid factor and state the condition wherethe resolved shear stress is maximum?

CENTRAL

- (d) What is a Tresca criterion of yielding?
- (e) Compare the strain energy of an edge dislocation with that of a screw dislocation for a metal having Poisson ratio=1/3.
- (f) What are the differences between slip and twinning?
- (g) What is elastic compliance? Give the relationship between modulus of elasticity and elastic compliance.
- (h) How is true stress related with the engineering stress?
- (i) Draw the idealized flow curves of
 - (a) rigid ideal plastic material
 - (b) Ideal plastic material with elastic region
- (j) What is elastic stiffness?

Estimate the strain energy of an edge dislocation where dislocation outer 2. radius (r) = 10 mm, dislocation core radius (r_0) = 1 nm, G = 50 GPa, b = 0.25 nm and V = 1/3. Express the result in electron volts per atomic plane. How much energy (electron volts) is required to produce 1 cm of dislocation line? 5 Show that more than one-half the strain energy resides outside the core of (b) the dislocation in the region $r = 10^{-4}$ to 1 cm. 5 What is the mechanism of precipitation hardening? Describe the different 3. stages of precipitation during aging time of Al-4.5Cu alloy. Boron fibers having elastic modulus (E₄) = 380 GPa are made into a (b) unidirectional composite with an aluminum matrix, $E_m = 60$ GPa. What is the modulus parallel to the fibers for 10 and 60 volume percentages? 5 Describe the displacement of points in a continuum may result from rigid body 4. translation, rotation and deformation. 10 Describe the generalized stress-strain diagram for FCCs ingle crystal and 5. explain the deformation behaviour in the freent stages. 5 How does the above diagram differ for B and HCP materials? 5 (b) Explain the Frank – Read mechanism of dislocation generation from the 6. (a) existing dislocation sources. Explain Bauschinger effect. Why the strain hardening in a fine grain size metal will be greater than in a coarse grained polycrystalline aggregate? 5 Explain the Von Mises' distortion-energy criterion. 7. 5 (a) If the yield strength of a steel is 50 MPa. Determine whether yielding will (b) occur. If not then what is the safety factor? If $\sigma_x = 20$ MPa, $\sigma_y = 10$ MPa, $\sigma_z = -5$ MPa, $\tau_{xy} = 3$ MPa. 5 Write short notes on any two of the following: 5×2 8.

PCMT 4302 2 -C

Yield point phenomenon for mild steel.

Factors affecting solid solution hardening

Lomer Cottrell barriers

Dislocation pile-ups.

(a)

(b)

(C)

(d)