Registration No. :						

Total number of printed pages - 3

B. Tech

FESM 6302

Fifth Semester Back Examination – 2014

ADVANCE NUMERICAL METHODS

BRANCH (S): CIVIL, MECH, MM

QUESTION CODE: L288

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest. The figures in the right-hand margin indicate of

1. Answer the following questions:

 2×10

- (a) Write the formula for $\frac{\delta^2 y}{\delta y^2}$ at $x = x_n$ using backward difference operator.
- Set up a finite difference scheme for the boundary value problem u'' = u, (b) u'(1)=a and u'(3)=b with h=0.5 central differences.
- What is the advantage of Inverse power method over Power method?
- Write the difference formula for $\frac{\partial u}{\partial x}$ in terms of difference quotients. (d)
- Solve: $u_{n+1} 3u_n$ given $u_0 = 2$. e)
- Write the diagonal five point formula to solve the equation: (f)

$$. \quad u_{xx} + u_{yy} = 0.$$

- Define Rayleigh's Quotient. (g)
- Compare Milne's predictor-corrector and Adam-Bashforth predictor-(h) corrector methods for solving ordinary differential equations.

(i)	For what value of λ , the explicit method of solving the hyperbolic equation							
	$\frac{\delta^2 u}{\delta x^2} = \frac{1}{C^2} \frac{\delta^2 u}{\delta t^2}$ is stable, where $\lambda = \frac{C \Delta t}{\Delta x}$?							
	$\frac{\partial x^2}{\partial x^2} = \frac{\partial x}{\partial t^2}$ is stable, where $x = \frac{\partial x}{\partial x}$.							

- (j) Write the Crank Nicholson difference scheme to solve $u_{xx} = au_{x}$ with $u(0, t) = T_0$, $u(l, t) = T_l$ and the initial condition as u(x, 0) = f(x).
- 2. Obtain the cubic spline approximation for the function y = f(x) from the following data, given by $y_0'' = y_2'' = 0$:

3. Find the values of f''(0.2), f''(0.6) and f''(1.0) from the following data using appropriate initial values based on finite differences and Pichardson's extrapolation method:

4. Evaluate the following by using trpezoidal rule with $h = \frac{\frac{1}{2,1}}{4}$, $\frac{1}{8}$ and then Romberg's method:

$$I=\int_{1}^{2}e^{\sqrt{x}}dx.$$

Find all the eigen values and eigen vectors of the following matrx:

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 2 & 2 \\ 1 & 2 & 1 \end{bmatrix}.$$

6. Given that $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, u(0, t) = 0, u(4, t) = 0 and $u(x, 0) = \frac{x}{3}(16 - x^2)$, find u(i, j), i = 1, 2, 3; j = 1, 2, 3 by Crank-Nicolson's method.

7. Evaluate y(0.9) using Adam-Bashforth's predictor-corrector method, given that $\frac{dy}{dx} = xy^{\frac{1}{3}}, \ y(1) = 1, \ y(1.1) = 1.10681, \ y(1.2) = 1.22787 \text{ and } y(1.3) = 1.36412. \quad 10$

(a) Discrete Fourier Transformation

- (b) Fast Fourier Transformation
- (c) Mixed Radix Fast Fourier Transformation.