Registration No.:						

Total number of printed pages – 2

B. Tech PCME 4304

Fifth Semester Regular Examination – 2014 MACHINING SCIENCE AND TECHNOLOGY

BRANCH: MECH

QUESTION CODE: H177

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indic

Answer the following questions :

2×10

- (a) Differentiate the orthogonal cutting and oblique cutting.
- (b) What is flank wear; with help of sketch show it on a cutting tool?
- (c) Distinguish between ideal roughness and natural roughness.
- (d) What are the four major parts of a carriage?
- (e) Name the factors affect the cutting speed of drill.
- (f) Compare group drive and individual drive.
- (g) How the size of a turret lathe is is specified?
- (h) Name the common electrolytes used in ECM.
- (i) List the product applications of LBM.
- (i) What are the limitations of LBM?
- Following data were collected from an orthogonal machine test on steel:

Cutting speed = 18 m/min

Rake angle = 20°

Clearance angle = 10°

Width of cut = 3.2 min

Underformed chip thickness = 0.10 mm

Deformed chip thickness = 0.25 mm

	Cut	ting force in cutting velocity direction = 800 N	
	Nor	mal force in a direction normal to cutting velocity = 500 N	
		w the Merchant's circle diagram and evaluate: shear angle, shear str ion co-efficient against chip flow, friction force on the rake face.	rain, 10
3.	(a)	Explain the need of cutting fluid and how it affects the machining.	5
	(b)	Derive the expression of optimum cutting speed for minimum cosmachining.	st of 5
4.	(a)	Estimate the grinding force during surface grinding of a 25 mm wide is steel block with a depth of cut of 0.05 mm. The diameter of wheel is 200 and the wheel rotates at 3000 rpm. The number of grits/mm² is measured found to be 3. The feed velocity of the table is 100 mm/min.	mm
	(b)	Sketch and describe the differential indexing method.	5
5.	(a)	Explain in detail the pull and push type broaches with their rela advantages and disadvantages.	itive 5
	(b)	Explain the principle of quick return mechanism with diagram.	5
6.		olain in detail with neat diagram the working of wire EDM and state antages, disadvantages and applications.	its 10
7.	(a)	Describe the method of AJM with help of a schematic diagram.	5
	(b)	Explain with diagram the working of gear hoobing machine.	5
8,	Writ	te short notes on any two :	5×2
	(a)	Plasma arc Machining	
	(b)	Lathe tool dynamometer	

(c) Speed reversal mechanism.