Registration No. :					2 7 4					, ,	
--------------------	--	--	--	--	-------	--	--	--	--	-----	--

Total number of printed pages – 4

B. Tech

PCEC 4303

Fifth Semester Regular Examination – 2014 CONTROL SYSTEM ENGINEERING

BRANCH: EEE, ELECTRICAL

QUESTION CODE: H 132

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What do you mean by 'Impulse Response' of a transfer function? Why is it named so?
- (b) Say with reasons, whether the system described by the relationship $y(t) = t \frac{d}{dt} u(t) \text{ is linear or non-linear, time-varying or time-invariant.}$
- (c) Write down the differential equation for the mechanical system shown in figure.

- (d) The closed loop transfer function of a control system is given by $\frac{C(s)}{R(s)} = \frac{1}{1+s}$ For the input r(t)=cos (t), determine the steady state response c(t).
- (e) What do you mean by the term 'Root Locus? Write down the magnitude and angle criteria for a point to be on the root locus, giving justification for your answer.

- (f) How does the polar plot get modified when
 - (i) A non-zero pole is added to the open loop transfer function?
 - (ii) A pole at the origin is added to the open loop transfer function?
- (g) Determine the phase angle for the transfer function $G(s) = \frac{1}{(1 + sT)^3}$ at the corner frequency.
- (h) What inference is drawn if there is a row of zeros in the Routh Array?
- (i) A unity feedback system has the forward path transfer function (S) H (S) = $\frac{25}{s(s+4)}$. What are the resonant frequency and damped natural frequency of the closed loop frequency especies in rad/sec?
- (j) Write down the usefulness of different control actions for a PID controller.
- (a) Obtain the overall transfer function of the system shown in figure.

- (b) In which aspects does a two-phase AC servomotor differ from a normal two-phase induction motor?
 5
- 3. (a) What do you mean by dominant closed poles of a system? How does the addition of pole and zero to a second order system affect the nature of response? Under what circumstances the effect of additional poles/ zeros becomes insignificant?
 - (b) The open loop transfer function of a unity negative feedback system is

$$G(s) = \frac{K}{s(s+15)}$$

If K=225, what change must be made in the system to reduce the peak overshoot by 50%, keeping the settling time the same? Also, find the new transfer function.

A mechanical system shown below is initially at rest. If the mass is moved with a
unit impulse force, find the displacement of the mass after one second, the damping
ratio and peak overshoot.

5. (a) The open loop transfer function of a unity feedback system is given by

G(s) =
$$\frac{K(s+1)}{s^2(s^2+8s+15)}$$

- (b) Is the above system stable for the value of K determined?
- 6. (a) Find the angle of arrival of the root locus at the complex zeros of the open loop transfer function of a unity feedback system,

 5

$$G(s) = \frac{K(s^2+4)}{s(s+2)}.$$

- (b) Explain about the different measures of relative stability in frequency domain.
- 7. (a) Sketch the Polar Plot for

$$G(s) = \frac{K}{s(s+2)^2}.$$

5

4

(b) Determine the phase crossover frequency and the gain margin for the above system.

8. Write short notes on any two of the following:

5×2

- (a) Bode Plot
- (b) Nyquist Stability Criterion
- (c) Zigler- Nichol's Method of tuning PID Controllers
- (d) Constant M-circles.