Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B. Tech

PCBM 4302

Fifth Semester Regular Examination – 2014 SIGNALS AND SYSTEMS

BRANCH(S): AEIE, BIOMED, CSE, EC, ETC, IEE, IT

QUESTION CODE: H 179

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Define discrete time signal.
- (b) Define a system.
- (c) Determine whether unit ramp signal is an energy signal or power signal.
- (d) Differentiate between even and odd signals.
- (e) Determine the z-transform for the signal $x(n) = \begin{cases} 2, & -1, & 0, & 1 \end{cases}$
- (f) If the N point DFT of x(n) is X(k), then show that the N-point DFT of x(N-n) is X(N-k).
- (g) Describe the homogeneity property of a continuous time system.
- (h) State and prove the frequency shifting property of Fourier transform.

- (i) Show that $R_{xy}(l) = x(l) * y(-l)$, where $R_{xy}(l)$ denotes the cross-correlation between x(n) and y(n), and '*' represents the convolution.
- (j) Find the continuous time Fourier transform of the Library
- (a) Show that a relaxed LTI system is causal if and only if fi(n) = 0 for n < 0, where h(n) represents the impulse response of the system
 - (b) Show that the necessary and sufficient condition grant laxed LTI system to be BIBO sable is $\sum_{n=-\infty}^{\infty} |h(n)| \le M_h < \infty$, for some constant M_n .
- (a) Determine the direct form I and II realization of the LTI system given as
 2y(n) + y(n-1) 3y(n-2) = x(n) + 4x(n-4).
 - (b) Determine the impulse response and unit step response of the system y(n) = 0.6y(n-1) 0.08y(n-2) + x(n).
- Determine the response, y(n), n ≥ 0, of the system described by the second-order difference equation y(n) 3y(n 1) 4y(n 2) = x(n) + 2x(n 1) when the input sequence is x(n) = 4ⁿu(n), and y(-1) = y (-2) = 0.
- 5. (a) Determine the z-transform of the signal $x(n) = (\cos \omega_0 n) u(n)$. 5
 - (b) Determine the inverse z-transform of $X(z) = \frac{1}{1 1.5z^{-1} + 0.5z^{-2}}$ if ROC: |z| > 1.
- 6. (a) Perform the circular convolution between the two sequences given as $x_1(n) = \begin{cases} 1 & 2 & 3 & 1 \\ \uparrow & & \end{cases}, \text{ and } x_2(n) = \begin{cases} 4 & 3 & 2 & 2 \\ \uparrow & & \end{cases} \text{ using the time domain formula.}$
 - (b) If x(n) is real and odd prove that its DFT X(k) is purely imaginary and odd.

5

7. Determine the one sided z-transform of the signal x(n-2), where $x(n) = a^n$.

5

(b) Find the Fourier Transform of $x(t) = t \cdot (\sin \Omega_0 t) \cdot u(t)$.

Write short notes on any two: 8.

5×2

Correlation of discrete time signals

- Stability of linear time-invariant system (b)
- Relation between Z-transform and DFT (c)
- Time shifting property of Fourier (d)