Registration No. :								
Total number of printed pages – 3							В.	Tecl

121

PCEC 4302

Fifth Semester Regular Examination – 2014 ANALOG COMMUNICATION TECHNIQUES

BRANCH(S): EC, ETC

QUESTION CODE: H 146

Full Marks - 70

Time: 3 Hours

Answer Question No. **1** which is compulsory and any **five** from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2 ×10

- (a) State the relation between the trigonometric series and the complex exponential series representation of the Fourier transform.
- (b) State and prove the duality property of Fourier transform.
- (c) Give two commonly used basis functions.
- (d) State two disadvantages of SSBSC type of communication system.
- (e) What are the advantages of a superheterodyne receiver?
- (f) Suggest a simple method to achieve frequency translation. Show that it really performs the task of frequency translation.
- (g) Derive a simple expression for modulation index in a phase modulation system when the modulating signal is a pure tone.
- (h) What are the primary advantages of pulse time modulation systems?

- (i) In a certain system, SNR is 40 dB. By how much is the signal power above the noise power numerical LIBRARY
- (j) Sketch a narrowband noise with proper labels.
- (a) Find the time domain signal corresponding to U(-f) where U(.) is a unit step function in the frequency domain. Explain the property of Fourier transform that you might have used here.
 - (b) Find the Hilbert transform of 1/t. 5
- 3. (a) Prove that the spectrum of a signal given as $x(t) \times y(t)$ is equal to $X(f) \times Y(f)$.
 - (b) A signal $m(t) = 10 \cos 200 \pi t$ is sampled at a frequency of $f_s = 300 \text{ Hz}$. Sketch the spectrum of the sampled signal. Redo the problem for a sampling frequency of $f_s = 400 \text{ Hz}$. What is your comment?
- Compute the mean and variance of a Gaussian random variable given as

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-m)^2}{2\sigma^2}\right).$$

- (a) Explain the salient features that a VSB filter must have in order to realize VSB modulation.
 - (b) Explain what kind of detection is carried out to demodulate a VSB modulated signal.
- (a) Express the carrier power as a fraction of the total power in an FM signal characterized with a modulation index equal to 2, with J₀(2) = 0.224.
 - (b) Realize a WBFM modulator that works with an lowest input frequency deviation of 49 Hz with a carrier frequency of 200 KHz. Choose appropriate values of multipliers and local oscillator frequency to have a destination frequency deviation of 75 KHz and carrier frequency of 91.2 MHz. Show your block diagram clearly with the designed numerals.

- 7. (a) Discuss suitable circuits for generating PTM signals with appropriate waveforms at each stage.
 - (b) Derive the transfer function of a zero order hold circuit by drawing a neat sketch.

 5
- 8. Write short notes on any two:

5×2

- (a) Low pass filtering of white noise
- (b) Figure of merit in DSBFC systems
- (c) Noise power at the discriminator output
- (d) Additive white Gaussian noise.