Registration No. :						

Total number of printed pages – 3

B. Tech PECS 5304

Fifth Semester Regular Examination – 2014 THEORY OF COMPUTATION

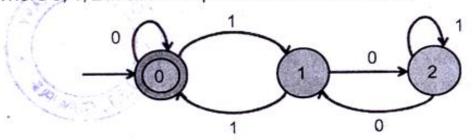
BRANCH(S): CSE, IT

QUESTION CODE: H 221

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.


The figures in the right-hand margin indicate marks

1. Answer the following questions:

2×10

- (a) Define NFA mathematically. Design an NFA intuitively which accepts set of all strings containing 3rd symbol from right side is 1.
- (b) Write a regular expression for set of all strings whose 2nd bit from the right end is 1 and 4th bit from the right end is 0.
- (c) Show that S → a|Sa|bSS|SSb|SbS is ambiguous.
- (d) What do you mean by a decidable problem?
- (e) Obtain the grammar to generate the language $L = \{ w : | w | mod 5 = 0 \}$ over $\Sigma = \{0,1\}$.
- (f) Discuss the Chomsky's Hierarchy of Grammars with examples.
- (g) State Church-Turing hypothesis.
- (h) Differentiate between PDA and DFA.

- (i) What is primitive recursive function? Represent the addition of two integer numbers in primitive recursive functions?
- (j) State Pumping Lemma for regular set.
- (a) Prove the language over alphabet {a,b,c} (a a b c | i >) } is a non-context free language.
 - (b) Language over ={0,1}*, such that every string is a Hamble of 3 in binary. The suggested DFA for the given problem is given below. Construct the equivalent Regular Expression from this DFA using Arden's theorem.
 5
 Where 0, 1, 2 in circles represents the remainders.

- (a) Show that the PDA that accepts the language L = {w ε {a,b} | n_a = n_b} is nondeterministic. First construct the PDA for the language then test.
 - (b) Let Σ = {0,1,+,=} and ADD = {x = y + z | x,y,z are binary integers, and x is the sum of y and z}. Show that ADD is not regular.
 5
- 4. Construct the minimized DFA from the regular expression for which accepts all inputs starting with double letters (aa, bb) or ending with double letters (aa, bb), given Σ ={a,b} is the alphabet set of the given language. Write the complete steps starting from regular expression to NFA and finally to minimized DFA for the problem.
- (a) Compute the Godel number for the following sequence:
 - (i) 3,0,1
 - (ii) 2,0,0,1
 - (iii) 2,0,1,3
 - (iv) 1,1,1,2,0

5

2

	(b)	What is an Ackerman's function? By defining the Ackerman's function file	nd
		out the values of	
		(i) A (3, 4)	
		(ii) A (4, 2).	5
6. (a)	What is GNF ? Bring the grammar G with V = {S,A,B},T = {a,b} are	nd	
		productions P	5
		$S \rightarrow AB$	
		A → BSB	
		$A \rightarrow a$	
		$A \rightarrow a$ $B \rightarrow b$ $GhtRAL LIBRARA$	
	(b)	Give the upper diagonal matrix produced by the CYIK algorithm for the give	en
		grammar.	5
		S → AB BC	
		$A \rightarrow BA \mid a$	
		B → CC b	
		C → AB a	
7. (a)	(a)	Define a TM in ordered seven-tuple specification with brief descriptions	of
		terms. Construct a TM over the alphabet {0, 1} that contains set of strings	
		0's and 1's except those containing the substring 001.	5
	(b)	Construct a TM to compute n ² .	5
В.	Writ	e short notes on any two the following: 5 ×	2
	(a)	PCP (Post's Correspondence Problem)	
	(b)	Early's Parsing	
	(c)	Time Complexity class P, NP and NP complete	
	(d)	Parikh's Theorem.	