	1000	-		HSSM 3302
Total number of printed	d pages – 3			B. Tech
Registration No. :				

Fifth Semester Regular Examination – 2014

OPTIMIZATION IN ENGINEERING

BRANCH(S): CSE, EEE, ELECTRICAL, ENV, IT, MANUFACT, MANUTECH, MINERAL, MM, MME

QUESTION CODE: H 174

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin value marks a

Answer the following questions :

2×10

- (a) Define slack and artificial variable.
- (b) What is sensitivity analysis and why do we perform it?
- (c) Explain briefly simplex method of solving a Linear programming problem.
 How is it better than graphical method?
- (d) Explain integer programming.
- (e) Describe transportation problem with its general mathematical formulation.
- (f) Show that assignment model is a special case of transportation model.
- (g) Define a queue. Give a brief description of the type of queue discipline commonly faced.
- (h) What is the meaning of a finite source population?
- (i) Define nonlinear function, convex set, non convex set.
- (j) Define local minimum and global minimum of a function.

$$Z = 3x_1 + 2x_2$$

subject to
$$2x_1 - x_2 \ge 2$$

$$\mathbf{x}_1, \mathbf{x}_2 \ge 0$$

Use Big-M method to solve the following (b)

6

$$Z = 5x_1 + 6x_1$$

subject to
$$2x_1 + 5x_2 \ge 150$$

$$3x_1 + x_2 \ge 1200$$

$$x_1, x_2 \ge 0$$

Find the dual of the following LPP and using dual simplex algorithm, solve : 3.

10

Minimize
$$Z = x_1 + 2x_2 + 3x_3$$

subject to
$$2x_1 - x_2 + x_3 \ge 4$$

$$x_1 + x_2 + 2x_3 \ge 8$$

$$x_2 - x_3 \ge 2$$

$$x_{1}, x_{2}, x_{3} \geq 0$$

Find the optimum integer solution of the following integer programming 4. 10 problem:

Maximize
$$Z = 4x_1 + 3x_2$$

subject to
$$x_1 + 2x_2 \le 4$$

$$2x_1 + x_2 \le 6$$

$$x_1, x_2 \ge 0$$
 and are integers.

Solve the following Transportation problem to maximize the profit: 5. (a)

5

Origin/Source	Α	В	С	D	Capacity
1	6	7	3	4	5
2	7	9	1	. 2	7
3	6	5	16	7	8
4	18	9	10	2	10
Demand	10	5	10	5	

(b) Solve the following assignment problem:

Job/persons	Α	В	С	D
1	10	12	19	11
2	5	10	7	8
3	12	14	13	11
4	8	15	11	9

6. Solve the following problem using only the Kuhn-Tucker conditions:

Maximize
$$Z = 100 - 1.2 x_1 - 1.5 x_2 + 0.3 x_1^2 + 0.05 x_2^2$$

subject to
$$x_1 + x_2 \ge 6$$

$$x_1, x_2 \ge 0$$

7. (a) Use the Golden section search method to minimize the function

Min
$$f(x) = 2(x-3)^2 + e^{0.5x^2}, 0 \le x \le 100$$

- (b) Explain Langrage's method to solve the non-linear programming
- 8. Solve the following using projection gradient method:

Minimize:
$$f(x) = 25(x_1 - 3x_2)^2 + (x_1 - 3)^2$$
.

5

10

6

4

10