Registration No.:										
Total number of printed pages – 3									В.	Tech
-									HSSM	3302

Fifth Semester Regular Examination - 2014

OPTIMIZATION IN ENGINEERING

BRANCH(S): AEIE, CHEM, EC, ETC, IEE

QUESTION CODE: H210

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2 ×10

- (a) Explain degeneracy in L.P.P.
- (b) Write the difference between dual simplex and simplex algorithm.
- (c) Explain the role of duality in linear programming.
- (d) Explain various steps involved in solving a transportation problem by applying the North West corner rule.
- (e) Show that assignment model is a special case of transportation model.
- (f) Explain the single channel and multi channel queueing models.
- (g) Write the transition diagram for M/M/3/3 model.
- (h) What are the primary uses of Kuhn-Tucker necessary and sufficient conditions?
- (i) What is the advantage of Golden search method over Fibonacci search method?
- (j) What are the basic advantages of genetic algorithm.

2. (a) Solve the following LPP using simplex method:

Minimize
$$Z = 4x_1 + 8x_2 + 3x_3$$

subject to $2x_1 + x_2 \ge 2$
 $2x_1 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

(b) In a LPP:

Minimize $Z = 3x_1 + 5x_2$ subject to $x_1 + x_2 \le 1$ $2x_1 + 3x_2 \le 1$ $x_1, x_2 \ge 0$

Obtain the variation in c_j (j = 1, 2) which are permitted without changing the optimal solution.

(a) Using duality, solve the following:

Minimize
$$Z = 5x_1 - 2x_2 + 3x_3$$

subject to $2x_1 - 2x_2 - x_3 \ge 2$
 $3x_1 - 4x_2 \le 3$
 $x_2 + 2x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

- (b) Customers arrive at a sales counter managed by a single person, according to a Poison law with a mean rate of 20 per hour. The time required to serve a customer has an exponential distribution with mean of 100 seconds. Find the average waiting time of a customer.
- Using revised simplex method to solve the following LPP:

Maximize
$$Z = -2x_1 - 4x_2 - x_3$$

subject to $x_1 + 2x_2 - x_3 \le 5$
 $2x_1 - x_2 + 2x_3 = 2$
 $-x_1 + 2x_2 + 2x_3 + x_4 \ge 1$
 $x_1, x_2, x_3 \ge 0$

10

5

5

6

5.	(a)	Solve the following Transportation problem to maximize the profit:
----	-----	--

Origin/Source	Α	В	С	D	E	Availability
1	3	4	6	8	9	20
2	2	10	1	5	8	30
3	7	11	20	40	3	15
4	2	1	9	14	16	13
Demand	40	6	8	18	6	

(b) The company X has four plants each of which can manufacture any one of the four products. Product costs differ from one plant to another as follows:

Product

		1	2	3	4
	1	42	35	28	21
Plant	2	30	25	20	15
	3	30	25	20	15
	4	24	20	16	CENT

Find out which product each plant should produce to prinimize costs 5

- 6. (a) If a factory maintains an average in-process equivalent to 300 work orders or jobs and an average job spends 6 weeks in the factory. What is the production rate of the factory in units of jobs per year?
 - (b) Use the Golden section search method to minimize the function: 5

Min
$$f(x) = 3x^4 + (x-1)^2$$
, $0 \le x \le 4$.

Solve the quardratic programming problem :

Maximize
$$f(x) = x_1^2 - x_1x_2 + 3x_2^2 - 4x_2 + 4$$

subject to $x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

8. Write notes on the following:

5×2

10

5

- (a) Markovian Queueing Model
- (b) Fibonacci search method.