Registration No. :										
--------------------	--	--	--	--	--	--	--	--	--	--

Total number of printed pages - 2

B. Tech

PEEL 5301

NTRAL LIB

Fifth Semester Back Examination – 2014 SENSORS AND TRANSDUCERS BRANCH(S) : EEE, ELECTRICAL

QUESTION CODE: L 275

Full Marks – 70 Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2 ×10

- (a) Justify the statement : "Tolerance is the statistical variations amongst a batch of similar elements".
- (b) Write one example of "direct equation" and "inverse equation" for a thermocouple with reference junction at 0°C.
- (c) Draw the circuit diagram of a Kelvin Double Bridge and write the equation at balance.
- Draw the time response curve of a 1st order system when subjected to
 - (i) unit step input and
 - (ii) unit ramp input.
- (e) What do you mean by reference junction compensation of a thermocouple?
- (f) The output voltage of a LVDT is 1.5 V at maximum displacement. At a load of 0.5 M Ω , the deviation from linearity is maximum, and it is ± 0.003 V from a straight line through origin. Find the linearity at the given load.
- (g) Write the formula for the resistance R of a thermistor as a function of absolute temperature T, coefficient β, reference temperature T₀ and reference resistance R₀.
- (h) What are the advantages of an Instrumentation amplifier over practical DC operational amplifier?
- (i) What are the advantages of using a Differential Push-pull arrangement in capacitive and inductive sensors? Also draw the circuit diagram of a variable plate capacitive sensor and variable reluctance type sensor in differential Push pull arrangements.
- (j) A lowpass filter is specified to have A_{max} = 1dB and A_{min} = 10dB. It is found that these specifications can be met with a single-time-constant RC circuit having a time constant of 1 sec and a dc transmission of unity. What must be the ω_p and ω_s of this filter?
- (a) Give an example of a second order system and derive its transfer function.
 Also, find the step input response of the system.

- Define the terms: (b)
 - Time constant and (i)
 - Damping ratio, used in describing dynamic characteristics of measurement system.
- 3. Describe the Thevenin's equivalent circuit of a thermocouple temperature (a) measurement system. Write the expression of the measured temperature. 5
 - Explain the operating principles of pressure measurement using a diaphragm. (b)
- A variable reluctance sensor, consist of a core, variable air-gap, and an 4. armature. The core is a steel rod of diameter 1 cm, relative permeability 100, bent to form a semi-circle of diameter 4 cm, a coil of 500 turns is wound onto the core. The armature is a steel plate of thickness 0.5 cm, calculate the inductance of sensor for air gap of 1 mm. Given: the relative permeability of air = 1.0 and the permeability of free space = $4\pi \times 10^{-7}$.
- (a) Explain the operating Principle of an LVDT and function of phase sensitive 5. demodulator circuit associate with LVDT.
 - Define Gauge factor of a strain gauge and derive an expression for it. (b) Derive the output voltage for four element strain gauge bridge.
- Draw the circuit diagram and list the important characteristics of an 6. (a) instrumentation amplifier. Derive the expression of the output voltage. Explain how the GAIN is adjusted.
 - Derive the transfer function of the circuit shown in Figure 1 below (for an (b) ideal op-amp) and show that it can be written in the form

- With the help of neat schematic diagram describe the functionalities of a 7. phase sensitive demodulator and its applications in instrumentation. 5
 - Discuss dynamic errors in instrumentation systems.
- 5 Write short notes on any two of the following: 8. 5×2
 - Electromagnetic sensors
 - Semiconductor strain gauge (b)
 - (c) IC temperature sensor
 - AC carrier systems. (d)

5