Registration No. :	-									
--------------------	---	--	--	--	--	--	--	--	--	--

Total number of printed pages – 3

B. Tech

HSSM 3302

Fifth Semester Back Examination – 2014 OPTIMIZATION IN ENGINEERING

BRANCH(S): AEIE, CHEM, EC, ETC, IEE

QUESTION CODE: L 289

Full Marks - 70

Time: 3 Hours

The figures in the right-hand margin indicate marks.

Answer Question No. 1 which is compulsory and any five from the rest.

Answer the following questions :

2 ×10

- (a) Write the mathematical model of linear programming.
- (b) Obtain the dual problem of the following primal LP problem

Maximize
$$Z = 3x_1 + 2x_2 + 5x_3$$

Subject to $2x_1 + 3x_2 \ge 2$
 $x_1 + x_2 + 2x_3 \ge 1$
 $x_1, x_2 \ge 0$

- (c) What is the principle of Big-M method in finding the solution of LPP?
- (d) Explain sensitivity analysis.
- (e) When degeneracy occur in a Transportation problem? Explain.
- (f) What do you mean by unbalanced transportation problem? How do you handle such situation in order to find a solution?
- (g) Explain the concept of branch and bound method in integer programming.
- (h) What is interarrival time in a queueing system? What type of probability distribution it follows in Markovian model of queueing system?

- What is the advantage of Golden search method over Fibonacci search (i) method?
- What is a quadratic programming? (i)

Minimize

Using graphical method, solve the following LPP: 2. (a)

 $Z = 3x_1 + 4x_2$ Subject to $10x_1 + 3x_2 \ge 30$ $2x_1 + x_2 \ge 6$ $2x_1 + 9x_2 \ge 27$

 $x_1, x_2 \ge 0$

(b) Express the following LLP in standard form and solve using simplex method 6

Minimize $Z = 5x_1 + 3x_2$ subject to $2x_1 + x_2 \ge 3$ $x_1 + x_2 \ge 2$ $x_1, x_2 \ge 0$

(a) Using duality, solve the following LPP 3.

> Maximize $Z = 2x_1 + x_2$ Subject to $x_1 + 2x_2 \le 10$ $x_1 + x_2 \le 6$ $x_1 - x_2 \le 2$ $x_1 - 2x_2 \le 1$ $\mathbf{x}_1, \mathbf{x}_2 \geq 0$

- (b) Write the steps of branch-bound method to solve the integer programming 5 problem.
- Solve the following LPP by revised simplex method 4.

 $Z = -3x_1 + x_2 + x_3$ Minimize $x_1 - 2x_2 + x_3 \le 11$ Subject to $-4x_1 + x_2 + 2x_3 \ge 3$ $2x_1 - x_3 = -1$ $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \geq 0$

10

4

Source/Destination	D1	D2	D3	D4	Supply
, S1	6	, .1	9	3	70
S2	11	5	2	8	55
S3	10	12	41	7	70
Demand	85	35	50	45	

(b) Four men are available to do four different jobs. From the past records, the time (in 2 hours) that each men takes to do each job is known and given in the following table. Find the assignment of men to jobs that will minimize the total time taken.

Job/persons	Α	В	С	D
1	2	3	4	5
2	4	5	6	7.
3	7	8	9	8
4	3	5	8	4

- (a) A barber runs his own salon. It takes him exactly 25 minutes to complete on haircut. Customers arrive in a Poisson fashion at an average rate of one in every 35 minutes. Find
 - (i) For what percent of time would the barber be idle
 - (ii) What is the average time of a customer spent in the shop
 - (b) Use the Golden section search method to minimize the function $f(x) = 2(x-3)^2 + e^{0.5x^2}$, $0 \le x \le 100$.

7. Write the short notes of the followings:

3+3+4

5

- (a) Lagrange multipliers
- (b) Kuhn-Tucker conditions
- (c) Fibonacci search method
- Solve the following quadratic programming problem

Minimize
$$Z = x_1^2 - x_1x_2 + 3x_2^2 - 4x_2 + 4$$

Subject to $x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$.

10