Total number of printed pages - 2

B. Tech

PCCH 4301

ENTRA

Fifth Semester Back Examination – 2014 HEAT TRANSFER

BRANCH: CHEM

QUESTION CODE: L 214

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Assume suitable notations and any missing data wherever necessary.

Answer all parts of a question at a place.

1. Answer the following questions:

2×10

- (a) Define thermal conductivity. Arrange the followings in the increasing order of their thermal conductivities: Water, Ice, and Gases.
- (b) The variation of thermal conductivity of a metal with temperature is often correlated using an expression of the form: k = k₀+aT, where k is thermal conductivity and T is temperature in Kelvin. What is the unit of 'a' in SI system?
- (c) Differentiate between natural and forced convection.
- (d) What are the assumptions taken in the derivation of Reynolds analogy equation?
- (e) Arrange the following in the increasing order of Prandtl number : Glycerol, Mercury, Water, and Oxygen.
 - (f) What do you mean by 25 percent baffle cut?
 - (g) Write the advantages of square pitch over triangular pitch.
 - (h) Differentiate between sub-cooled boiling and pool boiling of saturated liquid.
 - (i) Define a grey body.
 - (j) How heat transfer coefficient is related to number of passes in a shell and tube heat exchanger?
- 2. (a) Derive the steady-state heat conduction equation for a hollow spherical shell of inner radius R_i(maintained at T_i) and outer radius R_o(maintained at T_o). Assume K as the mean thermal conductivity of the material.

- (b) A hollow sphere has an inside surface temperature of 200°C and the outside surface temperature of 20°C. Calculate the heat loss by conduction for an inside and outside diameter of 4 cm and 10 cm respectively. The thermal conductivity of the material is 15 kcal/hr.m.°C.
- 3. (a) State the Buckingham's π -theorem of dimensional analysis.
 - (b) The resistance force F experienced by a partially submerged body depends upon the velocity-V, length-L, viscosity- μ , density of the fluid- ρ , and gravitational acceleration-g. Obtain the dimensionless expression for Fby using Buckingham's π -theorem method of dimensional analysis.
- 4. (a) Differentiate between film type and drop wise condensation. 2
 - (b) Derive the Nusselt equation for a vertical tube of length L and film thickness δ in film type condensation.
- (a) With a neat diagram describe the different parts of a shell and tube heat exchanger.
 - (b) What are the advantages of multi pass over single pass heat exchanger?
 Draw the temperature profile for a 2-4 shell and tube heat exchanger.
 4
- 6. (a) How evaporation is different from drying?
 - (b) Calculate the amount of steam required for concentrating the solution of caustic soda from 28 % wt. of solids to 40% wt. of solids in a single effect evaporator. The feed rate is 25000 kg/hr and its temperature is 60°. The absolute pressure in the evaporator is 0.2 kg/cm² (boiling point 60°). Saturated steam at 1.4 kg/cm² (108.7°C) is to be used as heating medium. The elevation in boiling point is 25°C. If the overall heat transfer coefficient is 670 kcal/hr.m².°C, calculate the heating surface required. The enthalpy data for various streams are as follows:

Vapour at 0.2 kg/cm²= 623kcal/kg,

28% NaOH at 60° C = 50 kcal/kg,

40% NaOH at 85°C= 90 kcal/kg, and

Latent heat of steam at 1.4 kg/cm² = 534 kcal/kg.

- Briefly explain the mechanism involved in the pool boiling of saturated liquid with a suitable graph.
- 8. Write short notes on any two of the following:

 5×2

3

2

- (a) Extended surface
- (b) Plate type heat exchanger
- (c) Forced circulation evaporator
- (d) Critical radius of insulation.