Registration No.:	B				

Total number of printed pages - 2

B. Tech

PEEC 4302

PAL LIBO

Fifth Semester Back Examination – 2014 FIBER OPTICS AND OPTOELECTRONICS DEVICES

BRANCH (S): MM, MME

QUESTION CODE: L 299

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions :

2×10

- (a) What is waveguide dispersion in an optical fiber?
 - (b) Write briefly the application of a circulator.
 - (c) Draw the refractive index profile for a step index optical fiber.
 - (d) Discuss briefly the quantum efficiency.
 - (e) Differentiate between an avalanche photodiode and a pin photodiode.
 - (f) Explain splicing in a single-mode fiber.
 - (g) Briefly describe the axial misalignment.
 - (h) Write briefly about pulse broadening in a graded index fiber.
 - (i) Define shot noise in a photodiode.
 - (j) What is mode field diameter?
- Derive an expression to estimate the total average cladding power in a step index fiber under the assumption that the light source is an incoherent source and excites every fiber mode with the same amount of power.
- The relative refractive index difference between the core axis and the cladding of a graded index fiber is 0.7% when the refractive index at the core axis is 1.45. Estimate the values for the numerical aperture of the fiber when:
 - (a) The index profile is not taken into account; and
 - (b) The index profile is assumed to be triangular.

Give comments on the results.

- (a) A multimode graded index fiber exhibits total pulse broadening of 0.1 micro second over a distance of 15 km. Estimate
 - The maximum possible bandwidth on the link assuming no intersymbol interference.
 - (ii) The pulse dispersion per unit length.
 - (b) Briefly describe the major reasons for the cabling of optical fibers which are to be placed in a field environment. Thus state the functions of the optical fiber cable.
- (a) Describe the three types of fiber misalignment which may contribute to insertion loss at an optical fiber joint.
 - (b) A single mode step index fiber has a critical bending radius of 2 mm when illuminated with light at a wavelength of 1.30 μm. Calculate the relative refractive index difference for the fiber.
- 6. (a) When 3×10^{11} photons each with a wavelength of 0.85 μ m are incident on a photodiode, on average 1.2×10^{11} electrons are collected at the terminals of the device. Determine the quantum efficiency and the responsivity of the photodiode at 0.85 μ m.
 - (b) Two polarisation maintaining fibers operating at a wavelength of 1.3 μ m have beat lengths of 0.7 mm and 80 m. Determine the modal birefringence in each case and comment on the results.
- - (b) What is population inversion? Explain the difference between a LED and Laser.
- 8. Answer any two of the following:

(a) Scattering losses in optical fiber.

(b) Explain briefly the modal birefringence.

(c) Describe briefly a p-n photodiode showing depletion and diffusion regions.

(d) Shot noise in a photo detector.

5×2

TRAL LIBRY