Registra	tion No.:
Total nui	mber of printed pages – 2 B. Tech
	PCMT 4302
	Fifth Semester Back Examination – 2014
	DEFORMATION BEHAVIOUR OF MATERIALS
	BRANCH (S): MM, MME
	QUESTION CODE: L 239
	Full Marks - 70
	Full Marks – 70 Time: 3 Hours
Answ	er Question No. 1 which is compulsory and any five from the rest.
717000	The figures in the right-hand margin indicate marks.
1. Fill	up the blanks : 2×10
(a)	Engineering stress – strain curve for ceramic material is
(b)	The number of slip systems in ideal close packed hexagonal structure is
(5)	
(c)	The yield point phenomenon observed in annealed low carbon steels is due
	to the presence of
(d)	Cross slip is prevalent in material with stacking fault energy.
(e)	To obtain super plasticity, the alloy should have grain structure and
	at high temperature.
(f)	A truly sessile dislocation in FCC material is
(g)	Driving force for grain growth is
(h)	A mixed dislocation can be characterised by an angle between and
	·
(i)	In a material, the yield stress and tensile strength are identical.
(j)	A low angle grain boundary occurs when the orientation difference between the adjacent grains is of the order of
2. (a)	Describe the yield point phenomenon of low carbon steel. 5

Draw the generalized flow curve for fcc single crystals as proposed by

Seeger and explain the various stages.

(b)

5

3. (a) Explain dislocation climb.

- 5
- (b) Explain the strengthening mechanism that occurs due to the presence of fine particles.
- 4. (a) Determine whether the following dislocation reaction is feasible: 5

$$\frac{a}{2}[110] \rightarrow \frac{a}{6}[21\overline{1}] + \frac{a}{6}[121]$$

- (b) A crystalline grain of a cubic metal plane is so oriented that a tensile load is along [111] direction of the crystal. If the applied stress is 0.8 MPa, calculate the resolve shear stress along the [101] direction within the (111) plane.
- 5. (a) What are the different lattice defects? Explain with suitable sketches the different types of point defects.
 - (b) Explain using suitable diagrams the different types of intrinsic and extrinsic stacking faults that are produced in most metals during plastic deformation.
- 6. Explain and compare slip in a perfect lattice with slip by dislocation movement. 10
- 7. (a) Explain through suitable diagrams the phenomena of strain aging. 5
 - (b) Differentiate and discuss on the tensile stress-strain plots observed for : metals, ceramics and polymers.
 5
- 8. Write short notes on any two:

5×2

5

- (a) Equicohesive temperature
- (b) Hall Petch relation
- (c) Polygonization
- (d) Dislocation pile-ups.