Registration No.:							2			
-------------------	--	--	--	--	--	--	---	--	--	--

Total number of printed pages - 2

B. Tech

PCEI 4301

NTRAL LEA

GUNU

Fifth Semester Back Examination – 2014 COMMUNICATION SYSTEM ENGINEERING BRANCH(S): AEIE, BIOMED, EIE, IEE

QUESTION CODE: L 231

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions:

2×10

- (a) Is AM a linear system? Justify.
- (b) What is a reconstruction filter? Give its impulse response.
- (c) Calculate the modulation index when a tone of 2V peak-to-peak amplitude modulates a 3V carrier. Sketch the modulated signal.
- (d) What are the factors that determine thermal noise? What noise you would obtain when you switch off the receiver?
- (e) Why frequency translation is performed? Is it carried out at the transmitter, channel or the receiver?
- (f) Sketch the spectrum when a periodic triangular wave of peak-to-peak amplitude of 1 V amplitude modulates a 2 V carrier.
- (g) Write down an expression for a phase modulated signal. Give its modulation index as well as its unit.
- (h) State one advantage and one disadvantage of FM.
- (i) Sketch the spectrum of a 100 Hz sinusoid when it is sampled at a rate of 150 Hz.
- (j) What is the performance index of a typical analog communication system? Justify.
- (a) Discuss the process of signal recovery from its samples. Justify your answer by deriving appropriate mathematical expressions.

	(b)	Derive the SQNR when an analog signal having a dynamic range of 10V is quantized with 256 levels. How do you binary represent the extreme amplitudes of such a signal?
		Can you apply companding when a compander is given by a transfer characteristic $v_0 = av_1$ where $ \alpha \ge 1$? Justify.
3.	(a)	Derive the spectrum of an arbitrary signal when it is sampled by a pulse train of unit amplitude and period <i>T</i> seconds. How can you recover the original signal from its samples at the receiver?
	(b)	Let W be arbitrary and $x(t)$ be a lowpass signal with bandwidth W . Show that
		the set of signals $\{\phi_n(t)\}_{n=-\infty}^{\infty}$ where $\phi_n(t) = \sin c(2Wt-n)$ represents an
		orthogonal signal set. 5
4.		ive the spectrum of a raised cosine pulse. How is it useful in a communication tem?
5.	(a)	Suggest suitable circuits for a transmitter and corresponding receiver for
	. ,	sending data by delta modulation.
	(b)	Compare PCM and DPCM. 5
6.	(a)	Discuss Armstrong's method of WBFM generation with appropriate block
		schematics. What is wide in WBFM?
	(b)	Discuss the principle and working of a Foster-Seeley discriminator with the help of appropriate circuit diagrams.
7.	(a)	Derive the expression for an USSB modulated signal. Suggest a suitable transmitter for this.
	(b)	Prove that multiplication in time domain is equivalent to convolution in frequency domain.
8.	Writ	e short notes on any two of the following: 5×2
	(a)	Quantization noise in delta modulation
	(b)	Pre emphasis and deemphasis
	(c)	Parseval's theorem
	(d)	PWM and PPM systems