Registration No. :											
--------------------	--	--	--	--	--	--	--	--	--	--	--

Total number of printed pages – 2

B. Tech

PCEC 4302

Fifth Semester Back Examination – 2014 ANALOG COMMUNICATION TECHNIQUES

BRANCH(S): EC, ETC

QUESTION CODE: L 230

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions : `

2×10

- (a) When two signals are said to be orthogonal? Give an example.
- (b) State and prove the modulation theorem of Fourier transform.
- (c) Can you apply Dirichlet's conditions to a unit step function? Justify.
- (d) State two salient features of DSB with carrier type of communication system.
- (e) Why is the superheterodyne receiver used?
- (f) Prove Parsevals' theorem.
- (g) When an FM signal is said to be an NBFM signal?
- (h) Is analog phase modulation used in practice? Justify.
- (i) What is SNR? Give its numerical value if it is 35 dB.
- (j) State the working principle of a slope detector.
- (a) Find the time domain signal corresponding to U (-f) where U(.) is a unit step function in the frequency domain. Explain the property of Fourier transform that you might have used here.

- (b) Give the spectrum of a triangular pulse train given as $\left(1 \frac{|t|}{\tau}\right)$ with a period of T.
- (a) Evaluate and sketch the convolution of a unit amplitude rectangular pulse of duration T seconds with itself. What is your observation from this result?
 - (b) A signal m(t) = $\cos 200 \,\pi t$ is sampled at a frequency of $f_s = 3000$ Hz. Sketch the spectrum of the sampled signal. Can volume cover the original signal from its samples?
- 4. Compute the mean and variance of a Gaussian and variable given as 10

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} exp \left(-\frac{\left(x-m\right)^2}{2\sigma^2} \right).$$

- 5. (a) Draw and explain a ratio detector circuit.
 - (b) Discuss the role of pre emphasis and de emphasis. Derive the transfer functions of these two circuits.
- (a) Find out the power content of a DSB with full carrier kind of modulated signal for an arbitrary modulating signal m(t). What does this result become when m(t) = cos 200 π t?
 - (b) Give two different realizations of a ring type modulator. Compare the two circuits.
- (a) Discuss suitable circuits for generating PWM signals with appropriate waveforms at each stage.
 - (b) Explain a sample and hold circuit and its application.
- 8 Write short notes on any two of the following:
 - (a) Noise equivalent bandwidth
 - (b) VSB and its applications
 - (c) White noise as a random process
 - (d) Ensemble average of random variables.

5

4

5×2