Registration no:											
------------------	--	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

5th Semester Regular / Back Examination 2015-16 BIOCHEMICAL REACTION ENGINEERING BRANCH: BIOTECH Time: 3 Hours Max Marks: 70 Q.CODE: T597

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

- **Q1** Answer the following questions:
 - a) What do you mean by performance equation?
 - b) What are the characteristic features of an ideal reactor?
 - c) Differentiate elementary and non-elementary reactions by giving one example of each.
 - d) The pyrolysis of ethane proceeds with an activation energy of about 75000 cal. How much faster is the decomposition at 650 $^{\circ}$ C than 500 $^{\circ}$ C?
 - e) Differentiate integral method and differential method of data analysis.
 - f) Differentiate heat of solution and heat of mixing.
 - g) Write the advantages of recycling.
 - h) On doubling the concentration of reactant the rate of reaction triples. Find the order of reaction.
 - i) Define limiting reactant and excess reactant.
 - j) Write the steps of solid catalyzed reaction.
- **Q2 a)** Write the integral method of analysis for constant volume batch reactor (5) operating at second order kinetics.
 - b) After 8 min in a batch reactor, reactant is 80% converted and after 18 (5) minutes the conversion is 90%. Find the rate expression for this reaction if $C_{A0} = 1$ mol/lit.
- Q3 a) A feed to a fractionating column analyzes by weight 30% is benzene and rest is toluene. The analysis of the distillate shows 52 weight % benzene and 4% benzene in bottom product. Calculate the amount of distillate and bottom product per 1000 kg of feed per hour. Also calculate the % recovery of benzene.
 - b) In production of SO₃, 100 kmol of SO₂ and 100 kmol of O₂ are fed to a reactor. If the % conversion of SO₂ is 80%, calculate the composition of the product stream on mole basis.
- **Q4** . The catalytic reaction $A \rightarrow 4R$ is run at 3.2 atm and 117 ⁰C in PFR (10) which contains 0.01 kg catalyst and used as a feed consisting of partially converted product of 20 lit/hr of pure unreacted A The results

B.TECH PEBT5304

(2 x 10)

are as follows

Run	1	2	3	4		
C _{Ain} , mol/lit	0.1	0.08	0.06	0.04		
C _{Aout} ,mol/lit	0.084	0.07	0.055	0.038		
Find the rate equation to represent this reaction						

Find the rate equation to represent this reaction

- **Q5** a) Gaseous reactant A decomposes as follows. A \rightarrow 3R, -r_A =0.6 min⁻¹C_A Find the space time and conversion of A in 50% A-50% inert feed having flow rate 180 lit/min and C_{A0} =300 mol/lit, to a 1 m³ mixed flow
 - reactor. **b)** Write the advantages and disadvantages of fixed bed and fluidized bed (5) reactor.
- Q6 a) Derive the kinetic expression for the competitive inhibition by a foreign (5) substance
 - **b)** Calculate the standard heat of formation of $acetylene(C_2H_2)$, given that (5) the standard heat of combustion of acetylene is -1299 kJ, the standard heat of combustion of carbon is -393.51 kJ and standard heat of formation of liquid water is -285.84 kJ.
- Q7 a) What are the different methods of evaluating the parameters In (5) Michaelis-Menten equation. Derive those equations from it.
 - **b)** Determine the Michaelis-Menten parameters v_m and K_m for the reaction (5) Urea + Urease \Rightarrow [Urea Urease] \rightarrow 2 NH₃ + CO₂ + Urease having rate constants k_1 (forward), k_2 (backward) and k_3 respectively. The rate of reaction is a function of Urea concentration as shown in the following table.

C _{urea} ,kmol/m ³	0.2	0.02	0.01	0.005	0.002
-r _{urea} ,kmol/m3	1.08	0.55	0.38	0.2	0.09

Finally express the rate equation for the above.

Q8 Write short notes on any two:

- a) Immobilized cell bioreactor
- b) Autocatalytic reaction
- c) Phases of cell growth
- d) Psychrometric chart

(5 x 2)

(5)