Total Number of Pages: 02

5th Semester Regular / Back Examination 2015-16 SIGNALS AND SYSTEMS Branch: AEIE,BIOMED,CSE,EC,EIE,ETC,IEE,IT Time: 3 Hours Max Marks: 70 Q.Code: T592

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1

Answer the following questions:

a) What is sampling theorem? Find the Niquist rate of sampling of the signal given below

 $2Sin^2(1500\pi t) - Cos(1750\pi t)$

- **b)** Name three standard discrete signals used for analysis of discrete system. Which is most popular among the three? Justify.
- c) Find out the step response of a system if the impulse response of the system is h(n) = u(n-5). Use Z-transform.
- d) State the properties of discrete time convolution.
- e) How many real multiplication and addition is required for computation of 32-point DFT?
- f) What is linearity property of DFT?
- **g)** Find DFT of $X^*(n)$?
- **h)** Explain the time scaling property of z-transform.
- i) Find the Fourier transform of $\sin \Omega t$.
- **j)** State the properties of autocorrelation and cross correlation of discrete time sequence.

Q2 a) What is discrete time signal? Differentiate between (5)

- (i) periodic and a periodic Signals
- (ii) energy and Power signals,
- b) Find the impulse response of the system h(n) described by second (5) order differential equation

$$Y(n) = 2y(n-1) - y(n-2) + x(n) + 3x(n-1)$$

Q3 a) Find the Z-transform of the following signal

(I)
$$x(n) = a^n u(n+1)$$

- (II) $x(n) = n^2 u(n-3)$
- b) Find inverse Z-transform of the casual signal x(n) whose Z- (5) transform is given as

$$X(z) = \frac{1}{1 - 1.5z^{-1} - 0.5z^{-2}}$$

B.TECH PCBM4302

(2 x 10)

(5)

Q4	(a)	Find the Fourier transform of $sgn(t)$	(5)
	(b)	Find continuous time Fourier transform of a periodic impulse train separated by period T and having amplitude A	
Q5	a)	Prove that DFT of real and even sequence is also real valued and	
	b)	even Determine if the system is described by the input output equation Y(n) = x(n) + 2x(n - 1) is stable /unstable, Linear/non linear.	(5)
Q5	a)	Find 4-pont DFT of the signal, $X(n) = \{1, 1, 0, 1\}$ and sketch	(5)
	b)	magnitude response The DFT of $x(n)$ is described as $X(k) = \{1, -1 + 2j, -1, 1 + 2j\}$. Find the DFT of $x^2(n)$	(5)
Q6	(a)	Determine the range values of parameter a for which the LTI system with impulse response	(5)
		$ \begin{aligned} x(n) &= a^n & n \ge 0, \ n \ is \ even \\ &= 0 & otherwise \end{aligned} $ Is stable	
	(b)	Prove that convolution of two signals in discrete time domain is equal to multiplication in discrete frequency domain	
Q7	a)	Determine pole- zero plot for the discrete signal $x(n) = a^n$ $0 \le n \le M - 1$ = 0 otherwise Where, $a > 0$.	(5)
	b)	The impulse response of LTI system is expressed as	(5)
	-	$h(n) = 0.2^{n}u(n)$	
		Find the value of A such that $h(n) - A h(n - 1) = \delta(n)$.	
Q8		Write short Notes on (Any two)	(5 x 2)
	a)	Recursive and non-recursive realization of FIR system	
	b)	Aliasing in time and frequency domain	
	c)	circular correlation	
	d)	Gibb's phenomenon	