Registration no:

Total Number of Pages: 03

Q1

5th Semester Regular / Back Examination 2015-16 OPTIMIZATION IN ENGINEERING BRANCH: AEIE,CHEM,EC,EIE,ETC,IEE Time: 3 Hours Max Marks: 70 Q.CODE: T660

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

- Answer the following questions:
- a) How one can convert primal optimal solution to dual optimal solution?
- **b)** If the cost of any basic variable is disturbed, then which characteristic of the optimal table may change?
- c) If any of the source component is disturbed, then which characteristic of the optimal table may change.
- d) What is the mathematical representation of transportation problem?
- e) What is the mathematical representation of assignment problem?
- f) Is it possible to claim assignment problem as a special case of transportation problem? If so, justify with reason.
- **g)** What is a degenerate solution in transportation problem? What is the nature of the solution given below with justification?

v	with justification :						
	5		3				
	2		4				
		1		1			

- h) How Hessian matrix is useful for optimality of multi-variable function?
- i) What is the expression for N_s and N_q in terms of arrival rate α and departure rate β in an infinite length queue ?
- **j)** What is the relation between W_s and W_q in terms of arrival rate α and departure rate β in an infinite length queue?
- Q2 a) A carpenter has to manufacture chairs and tables from a available resources, which consists of 400 cube feet of wood and 450 labour-hours. Again, the carpenter gets profits \$45 and \$80 out of a chair and table respectively. If the carpenter needs 5 cube feet of wood and 10 labour-hours for a chair, and 20 cube feet of wood and 15 labour-hours for a table, then formulate the linear programming problem to get maximum total profit
 - b) Solve the linear programming problem using graphical method without (5) graph paper

maximize subject to the conditions $F(X) = 45x_1 + 80x_2$ $x_1 + 4x_2 \le 80$ $2x_1 + 3x_2 \le 90$ $X = (x_1 - x_2)^T \ge 0$ (5)

(2 x 10)

<u>B.TECH</u> HSSM3302

Q3	a)	maximize $F(X) = 45x_1 + 80x_2$			
		subject to the conditions $x_1 + 4x_2 \le 80$			
		$2x_1 + 3x_2 \ge 90$			
		$X = (x_1, x_2)^T \ge 0$			
	b)	Find the optimal solution of the following linear programming problem using penalty method	(5)		
		minimize $F(X) = 80x_1 + 90x_2$			
		subject to the conditions			
		$x_1 + 2x_2 \ge 45$ $4x_1 + 3x_2 \ge 80$			
		$X = (x_1 \ x_2)^T \ge 0$			
Q4		Give precise answer using simplex table. $A = (x_1, x_2)^2 = 0$			
4 7	a)				
		minimize $F(X) = 45x_1 + 80x_2$			
		subject to the conditions			
		$x_1 + 4x_2 \ge 80$ $2x_1 + 3x_2 \ge 90$			
		$X = (x_1, x_2)^T \ge 0$			
	b)	-, -	(5)		
	~)	procedure	(0)		
		maximize $F(X) = 45x_1 + 80x_2$			
		subject to the conditions $x_1 + 4x_2 \ge 80$			
		$2x_1 + 3x_2 \le 90$			
		$X = (x_1, x_2)^T \ge 0$			
Q5		Answer in detail in compact form.			
	a)	Find the integer solution using branch & bound method	(5)		
		minimize $F(X) = 2x_1 + 3x_2$			
		subject to the conditions $4x_1 + 5x_2 \ge 13$			
		$X = (x_1, x_2)^T \ge 0$			
	b)		(5)		
	,	whose cost matrix is	(-)		
		1 4 6 3			
		9 7 10 9 4 5 11 7			
		4 5 11 7 8 7 8 5			
Q6		Give the detail derivation.			
	a) Find the initial solution of the following transportation problem using				
		Vogel's approximation method.			
		5 3 4 6 5 1 2 5 7 10			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		3 7 6 4			
	b)	Optimize the initial solution obtained in question (6a) using steeping	(5)		

b) Optimize the initial solution obtained in question (6a) using steeping (5) stone method.

- **Q7** Formulate non-linear programming problem in required form.
 - a) Show that the minimum length of the crease, when one corner of a long rectangular sheet of paper of width 1 foot is folded over so as to reach the opposite edge of the sheet, is $\frac{3\sqrt{3}}{4}$ feet. (5)
 - b) A rectangular box of height a and width b is placed adjacent to a wall.
 (5) Formulate the non-linear programming problem for the length of the shortest ladder that can be made to lean against the wall.
- **Q8** Solve the quadratic programming problem using Wolf's method (10) minimize $f(X) = 2x_1^2 + 2x_1x_2 + 2x_2^2$ subject to the condition

$$x_1 + 2x_2 = 2$$

 $X = (x_1, x_2)^T \ge 0$