Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages: 2

B.TECH PCEI4302

5th Semester Regular / Back Examination 2015-16 INSTRUMENTATION DEVICES AND SYSTEMS – I BRANCH(S): AEIE,EIE,IEE

Time: 3 Hours Max marks: 70 Q.CODE: T372

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

 (2×10)

(5)

- a) Define gauge factor of a strain gauge.
- b) Write the Laplace transform of unit step and sine wave functions.
- c) What is the importance of standards in calibration?
- d) On which principle a thermocouple works? Why cold junction compensation is necessary?
- e) How elasticity is used for pressure measurement in a bourden tube?
- f) Illustrate laminar flow and turbulent flow using suitable diagram.
- g) Write down the values of an instrumentation amplifier parameters.
- h) What is CMRR? Draw the equivalent circuit for an open loop amplifier.
- i) Differentiate between an operational amplifier and an instrumentation amplifier?
- j) Why bridge circuits are used in signal processing?
- Q2 a) Differentiate between RTD and thermistors. What do you understand by PTC and NTC of the above? (5)
 - b) The resistance R(θ) of a thermistor at temperature θ K is given by R(θ) = α exp (β/θ). Given that the resistance at the ice point (θ = 273 K) is 10K Ω and the resistance at the steam point is 1.0 K Ω , find the resistance at 40° C. (β =2946 K and α =1.86 x 10⁻⁴ K Ω)

Q3 a) Draw the block diagram of a measurement system and explain different (5) blocks. b) Derive the expression for gauge factor of a strain gauge. (5) Q4 a) Describe the various measurements that can be done using capacitive (5) sensing element. b) A variable dielectric capacitive displacement sensor consists of two (5)square metal plates, sides 10cm, separated by a gap of 2 mm. A sheet of dielectric material 2 mm thick and the same area as the plates can be slid between them to match the displacement. Calculate the capacitance of the sensor for a displacement of 2.0 and 5.0 cm. Dielectric constants of air and dielectric material are 1 and 4 respectively. Q5 a) Starting with Thevenin voltage E_{Th} derive the relationship among the (5) resistances in a balanced Wheatstone bridge. Draw the circuit. Draw the operational amplifier circuits of inverting amplifier, non-(5) inverting amplifier, differential amplifier and voltage follower. Write down the expression for V_{out} with respect to V_{in} for each. Q6 a) Describe the working of a turbine flow meter using a suitable diagram. (5) List the general characteristics that should be borne in mind for (5) selecting the most suitable differential pressure flow meters for a given application? Q7 a) With the help of a suitable diagram explain the working of a Doppler (5) shift flow meter. b) How can you measure the velocity at a point in a fluid? Use suitable (5) illustrations and expressions. Q8 (5×2) Write short notes on any two. a) Errors in measurement system b) LVDT sensors c) Phase sensitive demodulators

d) Electromagnetic flow meter