Registration No:									
------------------	--	--	--	--	--	--	--	--	--

Total Number of Pages: 02

B.TECH FESM6302

5th Semester Regular / Back Examination 2015-16 ADVANCE NUMERICAL METHODS

BRANCH: CIVIL,MECH,MM Time: 3 Hours Max Marks: 70 Q.CODE: T659

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

(2 x 10)

(5)

(5)

(5)

- a) What is the difference between Interpolation and Extrapolation?
- b) Write the piecewise interpolating polynomial for the following data

	5 11 16 6 11 11 6 1 6 1 6 1 1 1 1 1 g		o control of the control
X	0	0.5	1
Υ	1.000	0.5242	-0.9037

c) Find the value of f'(0.6) of the following data

Ī	Χ	0.5	0.6	0.7
	Υ	0.479	0.564	0.644

- d) What is the advantage of inverse power method?
- e) Write down the difference formula for $\frac{\partial u}{\partial x}$ in terms of difference quotients.
- f) What is Rayleigh Quotients?
- g) What is Fast Fourier Transform?
- **h)** Define elliptic, parabolic & hyperbolic type of partial differential equations?
- i) What is the difference between multistep method and predictorcorrector method?
- j) Explain the advantages of Implicit schemes over explicit schemes?

Q2 a) Find a natural cubic spline function interpolating the data

			
X	-1	0	1
Υ	-3	-1	-1

b) Find the interpolating polynomial using piecewise cubic Hermite interpolation of the following data

		0		
Χ	-1	1	2	-
f(x)	-5	7	76	
f'(x)	0	12	198	

Q3 a) Find the 1st derivative and 2nd derivative of the function tabulated below at x=1 & x=2

Χ	1.0	1.2	1.4	1.6	1.8	2.0
У	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891

- b) Find the Eigen values of the matrix $A = \begin{bmatrix} -2 & 2 & -1 \\ -2 & 2 & 0 \\ 2 & -2 & 3 \end{bmatrix}$ by QR method. (5)
- Q4 Evaluate $\int_0^2 \frac{dx}{x^2+4}$ using Romberg's method. Hence obtain an approximate value of π. (10)
- Find the Eigen values and Eigen vectors of the following matrix by using power method

 [2 -1 0]
 - $\begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$
- Q6 Find y(2) ,given $\frac{dy}{dx} = \frac{x+y}{2}$,with y(0)=2,y(0.5)=2.636,y(1)=3.595,y(1.5)=4.968 using
 - a) Adams Predictor –corrector method. (5)
 - **b)** Milne-Simpsons predictor –corrector method. (5)
- Solve the Heat equation $u_t = u_{xx}$ satisfying the condition u(0,t)=0, u(1,t)=1, t>0 and $u(x,0)=x^4$ for 0< x<1. Compute u for two time steps using Crank-Nicolson formula by taking h=0.2 and k=0.04.
- Q8 Explain wave equation. Derive the iterative schemes for the solution of wave equation using (5 x 2)
 - a) Explicit method
 - b) Implicit method.