Registration No.									
------------------	--	--	--	--	--	--	--	--	--

Total number of printed pages - 02

B.TECH

PCBT4303

2 x 10

5th Semester Regular/ Back Examination 2015-16 UPSTREAM PROCESS ENGINEERING BRANCH :BIOTECHNOLOGY Time : 3 Hours Max Marks : 70 Question Code : T501

Answer Question No. 1 which is compulsory and any FIVE from the rest. The figures in the right-hand margin indicate marks. Answer all parts of a question at a place. Answer the following questions :

1. Answer the following

(a)

What is Reynolds number .Calculate friction factor when Reynolds number is 1600, when flow of fluid is takes place through pipe?

- (b) Calculate the head loss due to friction of smooth pipe having diameter 400 mm, length 800 m carries water at a rate of $0.04 \frac{\text{m}^3}{\text{sec}}$ of kinematic viscosity $0.018 \times 10^{-4} \frac{\text{m}^2}{\text{sec}}$ and Reynolds number 7.073×10^4 .
- (c) Define Boundary Layer thickness concept
- (d) A hot fluid enters a DPHE at a temperature of 150 °c and is to be cooled to 94°c by a cold fluid entering at 38°c and heated to 66 °c .Shall they directed in parallel or counter-current.
- (e) What are Momentum equation and its correction factor?
- (f) Write the corrected form of Bernoulli's equation for real fluid by taking correction factor.
- (g) Estimate the heat loss per m² of the surface through a brick wall 0.5 m thick when the inner surface id at 400 K and the outer surface is at 310 K. The thermal conductivity of the brick may be taken as 0.7 W/(m.K).
- (h) Find the overall heat transfer coefficient from the following data LMTD = 23 K ,Area = $1.5 m^2$,Q = 116 KW , $F_T = 0.85$
- (i) State Ficks law of diffusion.
- (j) What is Constant Pressure and Constant rate of filtration.

2.	(a)	Draw	the	shear	stress	and	velocity	distribution	of	a	viscous	fluid	flowing	in	a	3
		horizo	ntal	pipe.												

- (b) Using Fanning equation derive the expression for determining pressure drop and loss of head due to friction in a circular pipe of diameter D and length L in turbulent flow region and in viscous region.
- 3. (a) The diameter of pipe at the section 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section-1 is $5 \frac{m}{sec}$. Determine the velocity at section-2.
 - (b) Derive Bernoulli's Equation for ideal fluid mentioning the necessary assumption.
 7 Also write the corrected form of Bernoulli's equation for real fluid by taking correction factor.
- 4. (a) Derive the expression for heat transfer through furnace wall made of three different materials in series. Assume K₁,K₂ and K₃ the thermal conductivities of materials and X₁, X₂, X₃ be the respective thickness. Assume hot face and cold face temperature be T₁ and T₂ respectively.

	Derive the expression for heat flow through thick walled cylinder (r_1 and r_2 as inside										
(b)	radious and outside radious) lagged with a layer of insulation. K_1 and K_2 are the										
	thermal conductivity of material and insulating materials. Assume r_3 be the outer										
	radious of insulation, inside temperature T_1 and temperature at the outer surface of										
	insulation as T_2 .										

5.	(a)	Draw the neat sketch of 1-2 shell and tube heat exchanger and label its parts.	2
	(b)	Derive the expression for overall heat transfer coefficient in case of combined conduction and convection.	8
6.	(a)	What do you mean by size reduction? Write some of the size reduction equipments.	5
	(b)	What is screening? Discuss some of the industrial screening equipments.	5
7.		Write in brief with sketches on fractionating column. Derive the operating line equation for rectifying section and stripping section.	10

5 x 2

8. Write short notes on any two:

- (a) Azeotropic Distillation.
- (b) Rayleigh's equation for Differential distillation.
- (c) Single Stage Adsorption Isotherm.
- (d) Critical thickness of insulation.