| Registrat | zion no: | | | | | | | |----------------|--|-----------------------|--|--|--|--|--| | Total Nu | 210 210 210 210 | <u>B.Teo</u>
EC430 | | | | | | | | 5 th Semester Regular / Back Examination 2016-17 FIBER OPTICS AND OPTOELECTRONICS DEVICES BRANCH(S): METTA, MME Time: 3 Hours | | | | | | | | 210 | Max Marks: 70 Q.CODE: Y466 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks. | 21 | | | | | | | Q1 | Answer the following questions: | (2 x 10 | | | | | | | 210 a) | Distinguish between electrical and optical signal. | | | | | | | | b) | Mention the drawback of graded Index fiber. | | | | | | | | c) | What is attenuation constant? Write its mathematical expression in term of power. | | | | | | | | d) | Why GaAs is a good candidate for optoelectronics devices? | | | | | | | | e) | Why 193.5THz and 229THz called communications windows? | | | | | | | | f) | The responsivity of a given p-i-n diode is 0.5 AW ⁻¹ for a wavelength of 1µm. What | | | | | | | | 210 | is the output photocurrent when optical power is 0.2 μW at the same wavelength? Define uniaxial and birefrigent crystal | 21 | | | | | | | g)
h) | Differentiate Braggs from Raman-Nath modulator. | | | | | | | | i) | Sketch the schematic diagram of SOA. | | | | | | | | j) | Give the notion on optical switching. | | | | | | | | Q2 (a) | What do you mean by confinement factor in optical fiber? Explain its properties from suitable expressions. 210 210 210 210 | (5) | | | | | | | (b) | Discuss various types of optical connectors including necessary diagrams | (5) | | | | | | | Q3 a) | A pin photodiode on average generates one electron-hole pair per two incident photons at second and third optical communication window. Assuming all the photo-generated electrons are collected, calculate (i) quantum efficiency of the diode | (6) | | | | | | | 210 | (ii) the maximum possible band gap energy (in eV) of the semiconductor, assuming the incident wavelength to be a long wavelength cut-off; the mean output photocurrent when the incident optical power is $10 \mu\text{W}$. | 21 | | | | | | **b)** Derive mathematical expression for multipath dispersion? **(4)** | | a)b) | The speed of light in vacuum and in the core of SI fiber is 3×10^8 ms ⁻¹ and 2×10^8 ms ⁻¹ respectively. When the fiber is placed in air, the critical angle at the corecladding interface is 75^0 . Calculate the | | | | | | | | |-----------|--|---|-------------------|-----|-----|----------------|-------------|--|--| | 210 | | ` ' | aperture of the f | | 210 | 210 | 21 | | | | Q5 | a)
b) | | | | | | | | | | Q6 | a)b) | normalized propagation constant? How are they related? | | | | | | | | | Q7 | | Briefly discuss transmitted intens | • | - | | expression for | (10) | | | | | | | | | | | | | | | Q8 | a)b)c) | Write short answ
TIR
LASER
ILD | er on following | | | | (2.5 x 4 | | | | Q8 | b) c) | TIR
LASER | ver on following | 210 | 210 | 210 | (2.5 x 4 | | |