Registration no:										
------------------	--	--	--	--	--	--	--	--	--	--

Total Number of Pages:

5th Semester Regular / Back Examination 2016-17 **CONTROL SYSTEM ENGINEERING** BRANCH(S): ECE, EEE, ELECTRICAL, ETC

> Time: 3 Hours Max Marks: 70 **Q.CODE: Y439**

Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.

Q1 **Answer the following questions:**

(2 x 10)

(5)

- Draw the signal flow graph for a given Transfer function: $T(s) = \frac{4}{s^2 + 6s + 11}$.
- Determine the stability of the system given as: $T(s) = \frac{2s-4}{s^2+s-6}$
- c) In a signal flow graph, define feedback loop, self loop and Non-touching loop.
- d) Define Nyquist Contour?
- e) In root locus technique, what is the difference between the breakaway point and asymptotic point.
- What is the difference between encirclement and enclosement?
- How many roots of a given polynomial are in the right half of the complex g) plane?

$$0.3s^4 + 1.1s^3 + 0.7s^2 + s + 3.1$$

- h) How to improve the speed torque characteristic of a two-phase induction motor used for AC Servomotor.
- What is the effect of negative feedback on Bandwidth and Disturbance?
- For a second order system with transfer function $T(s) = \frac{200}{s^2 + 3s + 13}$, determine the undamped natural frequency, the damping ratio and the oscillation frequency.
- The open loop transfer function of a unity feedback system is **Q2** a) $G(s) = \frac{210 \, K}{s(sT+1)}$, where K^{210} and T are constants. How many times the gain should be increased to increase the overshoot from 50% to 60%.
 - b) The open loop transfer function of a servo system with unity feedback is (5)

Evaluate the static error constants and obtain the steady state error of the system when subjected to an input of

$$r(t) = A_0 + A_1 t + \frac{A_2}{2} t^2$$

- Q3. a) For the system given by the characteristic equation s³ + 6s² + 10s + 12.4 = (5)
 0. Determine the location of the roots by shifting the origin of the s-plane by one unit to left and applying the Routh's Criterion.
 - **b)** Consider a unity feedback second order system without an integrator. Justify how the damping ratio is improved with the use of derivative controller.
- Q4 Draw the log-magnitude asymptotic plot for the transfer function, $G(s) = \frac{2000s}{(s+10)(s+100)}$ And find (a) the gain crossover frequencies, and (b) the frequencies at 3-dB attenuation.
- Q5 a) Explain the working principle of A.C Servomotor used for low power application. (5)
 - b) Explain in brief the working of Synchro transmitter. (5)
- Q6 Construct the root locus for a feedback system with open loop transfer function, (10)

$$G(s)H(s) = \frac{K(s + 1)(s + 4)}{s^3}$$

For what value of K, is the system stable?

- Q7 A feedback control system has forward path gain $G(s) = \frac{4}{s(s-1)}$ and feedback path gain H(s) = (s+1). Draw the Nyquist diagram for the system and assess the stability of the closed loop system. (10)
- Q8 Answer any two: (5 x 2)
 - a) Standard test Signals.
 - **b)** Constant M-Circles for unity feedback system.
 - c) PID Controller.
 - **d**) Generalized Static Error Coefficient.