210	210	210	210	210	210		210
Regist	ration No :						
Total N	umber of Pages : 0				PC	B.Tech CCH4305	
			ck Examination ACTION ENGIN				
210	210		NCH : CHEM	210	210		210
			ne : 3 Hours x Marks : 70				
			ODE : F749				
	Answer Question						
	i ne tig	ures in the righ	it hand margin i	ndicate marks	•		
Q1 ₂₁₀	Answer the follow What are elementar		210	210	210	(2 x 10)	210
a) b)	Write the energy ba	lance equation fo		eaction.			
c) d)	Define order and me Define ideal reactor	•					
e)	Write the significant	e of Damkohler I					
f) g)	Differentiate Space Mention the non-ide			nd MFR.			
210 (i)	Explain Macro and	Micro Fluids.	210	210	210		210
j)	Define activation en What are Autocataly						
Q2 a)	Classify the differen	t types of reaction	ns based on differ	ent parameters		(5)	
b)	Derive an expression					(5)	
Q3 a)	Derive an expression	n for ideal recycl	e reactors.			(5)	
b)	Differentiate betwee equations. 210	en Differential	and integral me	thod of finding	the rate	(5)	210
0.4				· ·		(40)	
Q4	Liquid reactant A de $A \rightarrow R$, $r_R = 0.40 C_A^2$		r the following kine	etics		(10)	
	$A \rightarrow S$, $r_S = 2 C_A$, mol A feed of aqueous	/m³.min	mal/m ³ antars a r	agetar dagampa	sees and a		
	mixture of A, R, S I	eaves the reacto					
210	for 90% conversion	of A in a PFR.	210	210	210		210
Q5	Assuming a stoichic					(10)	
	PFR required to stoichiometry if the						
	required size of the	same reactor typ	e		•		
Q6	The data given be					(10)	
210	closed vessel whic residence time of flu						210
	T, min 0	5 10	15 20	25 30	35		
	C , g / I 0	3 5	5 4	2 1	0		
07	Find the evenesion	fam valuma (//)	fan tha naastian A	LD Draduat	for a DED	(40)	
Q7	Find the expression with a variable dens	` ,		+ b 7 Product,	IOI A PFR	(10)	
Q8 210	Write short answe	r on anviTWO :	210	210	210	(5 x 2)	210
a)	Transition State The	•				(-)	
b) c)	Arrhenius Theory Collision Theory						
•	Arrhenius Theory Collision Theory						