	210	210 210 210	210	210	210			
Re	egis	stration No :						
otal	Nui	mber of Pages : 02	210		B.Tech 3T6l101			
		6 th Semester Regular Examination	2018-19	F L	5101101			
		BIOREACTOR DESIGN AND ANA	ALYSIS					
		BRANCH : BIOTECH Max Marks : 100						
		Time : 3 Hours						
	210	210 Q.CODE : F984	210	210	210			
Ans	iewa	r Question No.1 (Part-1) which is compulsory, any l	EIGHT fron	n Part-II and any	TWO			
		from Part-III. The figures in the right hand margin inc	dicate mar	ks				
			arouto man					
		Part- I						
Q1		Only Short Answer Type Questions (Answer All-10)			(2 x 10)			
	a):	What is a sprager? Name two types spragers?	210	210	210			
	p)	Define off-line and on-line sensor?						
	c)	State the working principle of an air lift fermenter?						
	d)	What do you understand by the term reactor stability?						
	e) f)	What is rheology? Define residence time distribution?						
	9) ₀	Draw and label the parts of a bubble column reactor?	0.10	0.40	210			
	9)) h)	Write the advantage of membrane reactor?						
	i)	What do you understand by scale up and scale down?						
	j)	List out the different type of impeller used in bioreactor?						
		Part- II						
Q2	210	Only Focused-Short Answer Type Questions- (Answer	r Any Eight	out of Twelve)	(6 x 8) ₂₁₀			
	a)	Diagrammatically represent tubular reactor?						
	b)	Distinguish between adiabatic and programmed reactors?						
	c)	Discuss in detail the use of perfusion reactor for animal and plant cell culture.						
	d)	Analyse theprinciples of kinetics for chemical and bio-chemical Reactions.						
	e)	Describe different types of ideal reactors and explain reactors?	why they	are called ideal				
	f) ⁰	What are difficulties and some considerations we have to heat transfer in the scale up of the bioreactor.	follow aerati	ion, agitation and	210			
	g)	Derive performance equation for a CSTR?						
	h)	Write in brief about recycle reactor?						
	i)	Write short notes on control of a bioreactor?						
	j) 210	Explain the static method for the determination of mass t bioreactor?	ransfer coef	ficient in aerated	210			
	k)	Explain in detail the mechanical fittings in a bioreactor?	210	210	210			
		Discuss the method in detail used for finding kLa in a biore	_					

210		210	210	210	210	210	210	210	
					Part-III				
	Q3		Only Long Answer Type Questions (Answer Any Two out of Four) Draw CSTR? State the advantage of running fed batch process of fermentation over					(16)	
210		210	batch process?	210	210	210	210	210	
	Q4		How do you interpret the integral method of analys					(16)	
	Q5		Explain in detail mass tra	nsfer of imm	obilised enzymes /ce	lls in packed	bed reactor?	(16)	
210	Q6	210	Describe in detail how the engineer?Give some read			tion is useful	to a bioprocess	(16) ²¹⁰	
210		210	210	210	210	210	210	210	
		210	210	210	210	210	210	210	
		010	242	0.10	0.40	0.10	240	240	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	