	210	210	210	210	210	210	21
	Ren	istration No :					
	rteg						
ota	l Nu	mber of Pages : 02				B.Te	
	210	6 th Sem	nester Regular /	Back Examina	tion 2018-19	PME6J0	ງບວ 21
		210		E ENGINEERIN	IG	2.0	
				CH : MECH : 3 Hours			
				larks : 100			
۱ns	wer	Question No.1 (Par	•	DE : F744 mpulsorv. anv	EIGHT from Pa	rt-II and anv TW	0
	210		fron	n Part-III.	0.10	210	21
	211	i ne tigu	res in the right l	nand margin in	dicate marks.	210	_ 1
		Object Assessed Trans.	=	Part- I		(0	40)
Q1	a)	Short Answer Type (Differentiate 2-s and 4		er All-10)		(2 x	10)
	b) c)	State the function of m State the difference be					
	d)	What are the different	types of live axles	?	210	210	2
	e) [≤] ˈ f)	How does positive car Why are the wheels se			210	210	
	g) h)	Why are universal join Name the parts of a po	nts required on pro	peller shaft?			
	i)	Why are slip joints ned	cessary?				
	j)	What is the purpose o	f a voltage regulat	or in the charging	system?		
)	210	Focused-Short Answ		Part- II	v Fight ² dut of Tw	/elve) ²¹⁰ (6 x	8) 2
	a)	Describe the flow of po	ower from engine	to the rear wheel?		verve) (0 X	0)
	b) c)	Explain the principle o			be drive?		
	d)	Why slip joints are ne		, .		a front and	
	e)	A motor car has a wh rear wheel track is 1.	217m. Calculate	the correct angle	of outside lock a	and turning	
	f) 210	circle radius of the out A car weighing 21336					2
	,	wheel base is 3m and	d the height of ce	ntre of gravity ab	ove ground is 0.	55m. If the	
		coefficient of friction of wheel drive rather that	n front wheel drive				
	g)	power is not a limitation How does kingpin incl		vide directional st	ability?		
	h)	What is an over drive			•	explaining	
	210	also the methods of co	ontrols. 210	210	210	210	2
	i)	State the advantages		ruction and also	spell out the adv	antages of	
	j)	separate body and characteristics. The input shaft of an		r box has two su	n wheels each wi	ith 25 teeth	
		splined to the shaft. The has a sun running free				•	
		has 80 teeth. Calculat	e the first, second	and reverse gear	ratios.		
	k) I) ²¹⁰	What are the difference State the additional					2
	٠,		ator output?				

210		21)	210	210	210	210	210	210
210	Q3 Q4	210	What causes driving torqu averaging de A motor car	s a difference in value from the ring evice and a torque has a wheel be	gear to the dried divider as applied as e of 3.64m, the	w do the differer ve axle? What ed to a differentia e height of its co	ntial pinion gears is mean by a sol?	speed 210 above (16)	210
210		210	40KM/hr on stopped, who a) the rear b) the front c) all the w The coefficie	a level track, deten: wheels are brake t wheels are brake heels are braked nt of friction betw	ermine the mininged ed 1 210 reen tyre and road	num distance in 210 d may be takenas		ay be	210
210	Q5	21	unity and be between the to be employ Sketch the la	ottom reverse go shafts is to be 1 red. ayout of a typical eeth for the vario	ear ratio of appi 10mm approxima constant mesh g	roximately 3.3:1. tely. Gear teeth of gear box for these	ses with a top go The centre dis of module 3.25mr e conditions givin sely how the diff	tance m are ng the	210
	Q6	a) b)	Write short Solar powere Fuel cell					(8) (8)	
210		21		210	210	210	210	210	210
210		21		210	210	210	210	210	210
210		21		210	210	210	210	210	210
210		21		210	210	210	210	210	210