210			210 21	0	210		210		210		210	210
			Registration No :									
	0										B.Tech	
			6 th	Somost	er Regula	r / Back	Fxami	nation	2018-1	9	PI	ME6I102
				REFRI	GERATIO					5		
210			210 21			NCH : M			210		210	210
	Max Marks : 100											
	Time : 3 Hours											
	Q.CODE : F221 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO											O from
				,		Part-III.	, j -				,	
					n the righ	t hand n	nargin	indica		ks.	04.0	010
210			210 21	0	210	Part- I	210		210		210	210
	Q1		Only Short Answe	er Type Q	uestions (A		ll-10)					(2 x 10)
		a)	What is the effect of									. ,
		 b) Discuss the advantages of vapor absorption refrigeration system over the vapor compression refrigeration system. c) What are the advantages of compound compression with intercooler over single stage 									the vapor	
											ingle stage	
210		n	compression?	0	210		210	0	210		210	210
210		d) e)	What do you mean Explain effect of va	•	•		•			on nerf		210
		0,	refrigeration system		alsonarge	pressure			Coourc			
		f)	Draw the schemati									
		g) h)	Mention the essent Define COP and TI		teristics of a	an ideal re	etrigerar	nt.				
		i)	Define Eutectic poi									
210		j)	What is adiabatic h		on? 210		210		210		210	210
210			210 21		210	Part- II	210		210		210	210
										(6 x 8)		
	 A refrigerating system working on Bell-Coleman cycle receives air from cold chamber at - 5⁰C and compresses it from 1 bar to 4.5 bar. The compressed air is then coolded to a 											
			5°C and compress temperature of 37 ⁰									
			system when co									
210			$p_{10}^{1.25}$ = constant.	0 .	. 210 .	<i>c</i> , <i>c</i> ,	210		210		210	210
		b)	The following data Ram air temperatu					ystem:				
			Cabin air temperati									
			Pressure at the exi	t of main c	ompressor	: 4.5 bar.						
			ε =Heat exchange		ness :0.8,	$\eta_c = 0.84,$	$\eta_e = 0.$	8				
			Cooling load=31kW		and of the	hlad air fr	om tha	main ac	marcoo	or for r	frigoration	
210			Determine (a) tonr (c) heat rejection;									210
		C)	What is sub-cool	ing and s	superheatin	g? Éxpla	in with				n. Why is	
		-1)	superheating cons		•							
		d)	Make a compara system.	tive list b	etween a	vapor-abs	sorption	systen	n and v	vapor-c	ompression	
		e)	A reversed Carno									
			temperature $t_0=5^{\circ}$									
210			temperature of 53 ^c coefficient of the ² h									210
-			is $U=250 W.m^{-2}K^{-1}$									
			exchanger, area of									

- f) A Freon 12 vapour compression system operating at a condenser temperature of 40°C and an evaporator temperature of 0°C develops 15 tons of refrigeration. Using the p-h diagram for Freon 12, determine: (a) the discharge temperature and mass flow rate of refrigerant circulated, (b) the theoretical piston displacement of the compressor and piston displacement per ton of refrigeration, (c) the theoretical horsepower of the compressor and horsepower per ton of refrigeration (d) the heat rejected in the condenser and the Carnot COP.
- What are azeotropic and non-azeotropic mixtures? Explain, in brief, their advantages giving g) examples
- An ammonia refrigerating plant is working at an evaporating temperature of -30°C and a h) condensing temperature of 37°C. There is no subcooling of the liquid refrigerant, and the vapour is in the dry-saturated condition at the inlets to the compressors. The capacity is 150kW refrigeration. Estimate the power consumption.
 - (i) when one-stage is used,
 - (ii) when two-stage compression with flash inter-cooling is used,
 - (iii) when two-stage compression with flash chamber and liquid subcooler is used. Assume suitable intermediate pressure.
- The operating conditions for a water-lithium bromide chilled-water plant for air conditioning i) are as follows:

97°C Generator temperature : Condenser temperature : 40°C Chilled-water temperature : 10°C 40°C

- Absorber temperature : Find the temperature of the solution entering generator assuming hot solution iscooled to the saturation temperature at absorber pressure. Determine for one ton refrigeration capacity, the following:
 - (i) The thermodynamic conditions at all points
- (ii) Coefficients of performance.
- Write short notes on : j)
 - (i) Secondary refrigerant

(ii) Thermodynamics of human body 210

- The amount of air supplied to an air conditioned hall is 300m³/min. The atmospheric k) conditions are 35° C DBT and 55% RH. The required conditions are 20° C DBT and 60% RH. Find the sensible heat and latent heat removed from the air per minute. Also find sensible heat factor for the system.
- I) Define the term effective temperature and explain its significance in the design of air conditioning systems.

210			210 210 210 Part-III 210 210 210	210							
			Only Long Answer Type Questions (Answer Any Two out of Four)								
	Q3	a)	Explain the working principle of air refrigerator working on a Bell-Coleman cycle using <i>P-v</i> and <i>T-s</i> diagram. Derive the expression for COP.	(8)							
		b)	In a vapor compression refrigeration system using R-12, the evaporator pressure is 1.4 bar (8 and the condenser pressure is 8 bar. The refrigerant leaves the condenser sub-cooled to 30°C. The vapor leaving the evaporator is dry and saturated. The compression process is isentropic. The amount of heat rejected in the condenser is 13.42 MJ/min. Determine								
210			(i) refrigerating effect in kJ/kg; 210210210210(ii) refrigerating load in TR;(iii) compressor input in kW; and (iv) C.O.P.	210							
	Q4	a)	Describe a two stage ammonia vapor compression refrigeration system and calculate the savings of work over a single stage system in terms of enthalpies.								
		b)	A two-stage refrigeration system works between the pressure limits 9.634 and 1.828 bar (saturation temperatures 40°C and -15°C). Obtain the COP and capacity for a flow rate of	(6)							
210			0.2 kg/s through the evaporator 2 The intermediate pressure is 41238 bar. Compare the	210							

kg/s through? the evaporator? The intermediate pressure is 4.238 bar. Compare the COP and capacity of the two stage system with a corresponding single stage operating between the above pressure limits. The refrigerant used is R-12.

210	210	210	210	210	210	210	210

Q5 a) Explain the working principle of a simple three fluid absorption system with the help of a neat schematic diagram. Compare between three fluid and two fluid absorption system.
 b) Explain with neat sketch the working principle of Thermoelectric Refrigeration. Define figure (8)

(10)₂₁₀

(6)

- of merit.
- **Q6** a) Given for the air conditioning of a room : Room conditions: 26.5^oC DBT and 50% RH Room sensible heat gain=26.3 kW Room sensible heat factor=0.82 Find :
 - (i) The room latent heat gain.
 - (ii) The apparatus dew point.
 - (iii) The cmm of air if it is supplied to the room at the apparatus dew point.
 - The cmm and specific humidity of air if it is supplied to the room at 17° C.
 - b) 39.6 cmm of a mixture of recirculated room air and outdoor air enter a cooling coil at 31°C DB and 18.5°C WB temperatures. The effective surface temperature of the coil is 4.4°C. The surface area of the coil is such as would give 12.5kW of refrigeration with the given entering air state. Determine the dry and wet bulb temperatures of the air leaving the coil and the coil bypass factor.

210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210
210	210	210	210	210	210	210	210