	2	10	210	2	10		210		210		210	210
	Re	gistration No	:									
Tota	l Nu	mber of Pag	es : 02						<u> </u>			B.Tech
			6 th So	mester	Poquia	r / Bac	k Evam	ninatia	on 20,	18-10	PE	L6I102
	0	10		WER S							010	010
	2	10	210		10		- 10	u 00			210	210
						k Marks						
						ne : 3 H						
					Q.0	CODE :	F218					
Ans	swei	^r Question No	o.1 (Part-	1) whic	h is cor	-		EIGH	IT fro	m Part	t-ll and any TWC	D from
						Part-I						
	2	10	1 ne fig	ures in $\frac{1}{2}$	tne rigr	nt nand	1 margi 210	n indi	10 ICATE	narks.	210	210
						Part-						
1		Only Short A	nswer Tv	pe Ques	tions (A							(2 x 10)
-	a)							analy	sis.			(_ / · · · ·)
	b)											
		respectively.										
	C)		two diffe	rences b	etween	Newto	n Raphs	son ar	nd Fa	st Deco	oupled load flow	
	a) 2	methods.	1210 h . t.		10		210	ال الم	<u>c</u> 210		210	210
	a) e)	Briefly differer		een Eco		bad Disp	balch an	a Unit	Comm	nimeni.		
	c) f)	What is Penalty factor? What is spinning reserve?										
	g)	Briefly explain			ACE in	multi-ar	ea AGC					
	ĥ)								ontrol i	n load i	frequency control	
		loop?										
	i)	Write the swin	• •									
	j) 2										er limit is 75MW.	210
		25 MW. Negle					prine n		input i	5 Suuuu	ing increased by	
		0										
2				_	•	Part-		-				(0 0)
<u>.</u>	2)	Only Focuse									$6+12j$ and $Z_3=30-12j$	(6 x 8)
	a)	30j. Find the p									$0 + 12j$ and $2_3 - 50-$	
	b)										making suitable	
	•	assumptions.						•	210	o una	210	210
	C)								bus-1	to refer	rence 2j Ω, bus-2	
											us-3 0.4j Ω, bus-	
			•		-		to bus-4	4 0.1j	Ω. Dra	aw a co	onfiguration of the	
	d)	system and fir					d whon a		nao roc	ulatori	is connected to a	
	d)	particular bus				moune		a voila	ige reg	Julator	is connected to a	
	e)					n terms	of powe	er outo	out of	the plai	nts considering a	
											P_2 =50MW. If loss	210
		coefficients ar	e B ₁₁ =0.00	01, B ₂₂ =0	.0025 ar	nd B ₁₂ =-	0.0005.	What	will be	the pov	wer loss?	
	f)	Explain the dy										
	g)										plain its working.	
	h)			•							oower system. (ALFC) loop and	
	11)	develop its bl			or a sing	gie alea	automa		u now	control		
	i)				nd 400 N	/W are	operatin	ig in p	arallel	The dr	roop characteristic	
	'										Assuming that th	
		generators are	e operatin	g at 50H	z at no İ	load, ho	w would	l a loa	d of 60	DOMW I	be shared betwee	r
								ssume	free g	overno	r operation. Repea	a
		the problem if	both gove	ernors ha	ve a droo	op of 4%	6.					

210		2	10	210	210	210	210	210	210			
210		 j) Define and explain the terms(a) steady state stability (b) transient stability (c) steady state stability limit (d) transient stability limit k) Show that two synchronous generating sources of inertia constants M₁ and M₂ respectively, and interconnected by means of a transmission line, may be regardea for purposes of stability studies as a single generator, of inertia constant (M₁M₂)/(M₁+M₂), connected through the same transmission line to an infinite busbar. I) 21 What is transient stability and discuss the various factors affecting transient stability.10 										
	Q3	What are the various load flow methods? Explain and compare all these methods stating the advantages and disadvantages of each of these methods.										
210	Q4	2 a)	10 Explain the er	210 Conomic load dis	210 patch as a cons	210 trained optimizat	210 ion problem and	210 the method	210 (6)			
	QT	b)	to solve it. The fuel cost of C ₂ =400+5.5P ₂ 800 MW. Neg	of 3 thermal plant + $0.006P_2^2$, C ₃ =2 lecting losses ar	ts in \$/h are giver 00+5.8P ₃ +0.004F nd generation lim and b) iterative m	as: $C_1=500+5.3$ P_3^2 , P_1 , P_2 , P_3 are its, find the optin	P ₁ +0.004P ₁ ² , in MW. The tota nal dispatch and	l Load PD is	(10)			
210	Q5	2	Synchronizing		schematic of a nt and Tie Line stem.				(16) 0			
	Q6		single machin	e infinite bus sys	rea criterion. How tem , for the two some time by tri	o different system	ns of operation i)	sustained line	(16)			
210		2	10	210	210	210	210	210	210			
210		2	10	210	210	210	210	210	210			
210		2	10	210	210	210	210	210	210			
210		2	10	210	210	210	210	210	210			