210	0	210	210	210	2	10	210	21
Reg	jistra	ation No :						
Tota	al Nu	ımber of Pages	: 02	-			B	.Tech
		_	6 th Semester Bac	k Evemine	tion 2019	10		/I3302
210	0	210	OPTIMIZATION I		_	1(9	210	21
BR		SHION, FAT, IEI	Max	AC, MANUT	TECH, MA	RINE, ME		•
210	0		on No.1 which is c gures in the right	ompulsory			n the rest.	21
Q1			owing questions :				(2	2 x 10)
	a) b)	What is slack va Write Degenerat						
	c)	What is Basic fea	asible solution?	ahlam?				
210	od) e)		on Transportation pro et and convex functio		2	10	210	21
	f)	What is basic co What is stepping	ncept of Kuhn Tucke	r Condition?				
	g) h)	What is sensitivity						
	i) j)		programming problem Imetrical dual probler					
	•,	•	·					
Q2 210			ethod to solve the L. $+ x_2$ subject to the 0		2	10	210	(5)
		X ₁	$+ x_2 \leq 1$					
	b)		$3x_1 + x_2 \ge 3$ x_1 Simplex method to s		P.P. :			(5)
			aximize Z= 2x ₁ + x ₂ ubject to the constrai					
		4	$x_1 + 6 x_2 + 3 x_3 \le$	8				
210	0		$x_1 - 6 x_2 - 4 x_3 \le x_1 + 3 x_2 \stackrel{2}{=} 5 x_3 \ge$		2	10	210	21
			$x_1 \cdot 0 x_2 \cdot 0 x_3 = 0$	7				
Q3	a)	Solve the Zero C	one Programming pro	blem				(5)
		$\max z = x_1$	+ 2 x ₂ + x ₃					
		subject to x ₁	$+ 2 x_2 + x_3 \le 10$					
210		210 23	$x_1 - 3x_2 - 4x_3 \le 14$	210	2	10	210	21
			$x_1 + 5x_2 + x_3 \le 6$					
		& x _i	≥ 0 or 1 for all i.					
	b)	Solve the Nonl	inear programming p	problem by	Lagrange's	multipliers	5	(5)
		Maximize	$e Z = (x_1)^2 + (x_2)^2 + 3$	$3x_1 + 4x_2$				
			ubject to the constrai					
		0.10	210	210	2:	10	210	21
21(0	²¹⁰ 2 3	$x_1 + x_2 = 10$		_			

