210			210	210	210		210		210	210	210
			Registration No	:							
	Total	Nu	mber of Pages :	02						P	B.Tech CE6l101
210			210		UMERIC/ B		HODS & :CHEN ks:100	: MATL/ 1	n 2018-19 AB ₂₁₀	210	210
	Q.CODE : F993 Answer Question No.1 (Part-1) which is compulsory, any EIGHT from Part-II and any TWO from										
			-	The figure	s in the	Part right har		in indio	cate marks	•	
210			210	210	210	-	210		210	210	210
		b)	Only Short Answ What is difference What is spline fun	e between I ction?	nterpolatio	on and Ex	All-10) trapolatio				(2 x 10)
210	 c) Define piecewise Interpolation and explain its importance. d) The Newton Raphson method is used to find roots of equation f(x) =x-cosπx. If the initial guess for the root is 0.5. Then the value of x after first iteration. e) Define elliptic, parabolic and hyperbolic type of partial differential equation. f) Write the formula for Crank- Nicolson method. g) State second and third order Adams- Bashforth method. h) Write the stability condition for explicit method and implicit method in wave equation. i) Define discrete fourier transform and algebraic form of FFT. j) Define Rayleigh's Quotient. 									·	210
Part- II Q2 Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve) ²¹⁰ a) Find piecewise linear & Quadratic Interpolation of the given data & also find Y (1.5) and Y for both the cases. X=1 2 3 4 Y=2 4 8 16								-	(6 x 8) ⁰		
	 Y= 2 4 8 16 b) Estimate the natural logarithm of 2 using linear Interpolation. First perform the computati by Interpolating between In1=0 and In6=1.791759. Then repeat the procedure but use a smal interval from In1 to In4=1.386294. Note the true value of In2 is 0.6931472. 										
210	 c) Evaluate \$\int_0^2 \frac{dx}{x^2+4}\$ using Romberg's method. Hence, obtain an approximate value of π. ²¹⁰ d) Find \$y'(1.5)\$ using forward, backward and central difference formula for a given data as \$x = [0.5, 1, 1.5, 2, 2.5]\$, \$y = [1.414, 2, 2.828, 4, 5.657]\$									210	
		f)	Write the different	steps of Q	R factoriza	ation to fi	nd the eig			a. In of the following	
210		g)	data.	210	210 x -1 1 2	<i>f(2</i> -5 7 76	210 x) 0 12 19	<i>f'</i> (<i>x</i>) 2 98	210	210	210
210	h) Calculate 2^{nd} and 3^{rd} order derivative of f(2) using Taylor's polynomial approximation for following data points. $x = [0, 1, 2, 3, 4, 5], y = [0, 0.33, 2.67, 9, 21.33, 41.67]^{210}$ 210 210 210									210	
				$\frac{ly}{lx} = \frac{1}{2}(x + 1)$	y) ² with y	(0)=2, y(0	0.5)= 2.6			y(1.5)= 4.968 by	

210			210	210	210	210	210	210	210
		j) k) l)	using Milne-S Write short n	Simpson Predicto otes on (a) Quad	r-corrector meth ratic splines inte	y(0.5)= 2.636, y(nod. erpolation and (b) olation and (b) F) Cubic splines in	iterpolation.	
210			210	210	210 P	art-III 210	210	210	210
	Q3			Answer Type Qu owing parabolic ן	estions (Answo partial differentia	er Any Two out	of Four)		(16)
210			u(x, 0) = cost and $u(x, 0) =$ and boundar (u(0, t) = u(2, 0)	0, otherwise y condition as	210 ke h= k = 0.5	210	210	210	210
	Q4		Solve the di y(1)=1 and fi		$\int \frac{dy}{dx} = 1 + y^2,$	using Adam-Mo	oulton method o	of order-2. Take	(16)
210	Q5			iecewise quadra on f(x) defined by x f(x)	the data. -3 -2	polynomials and -1 1 3 1 165 207 99	6 7	ting polynomials	(8+8) 10
			Hence, find a			both the interpol			
	Q6			power method f trix including erro		en value and co	rresponding eige	en vector of the	(16)
210			210	210	210 A =	$\begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}^{10}$	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210
210			210	210	210	210	210	210	210