10	210	210	210	210	210	210	21
	Registr	ation No :					
10	Total Nu	umber of Pages : 0	210	210	210	210	B.Tech
0	210		ADVANCED N BRA Tin Ma:	ack Examinatio IUMERICAL ME NCH : CHEM ne : 3 Hours x Marks : 70 CODE : F67 0		FES 210	M6302 21
		Answer Question I The figu	No.1 which is	compulsory a	nd any FIVE fro indicate marks		
10	Q1 a) b) c) ²¹⁰ d)	What are the types of Describe Richardso	for the choice of of Cubic spline? n Extrapolation	of interpolation. PExplain. in derivative com			2 x 10) 21
)	e) f) g) h) i) ²¹⁰ j)	State the difference What is meant by equation? Write a short note o Determine the eiger Explain inverse pow State the ² condition	multi - step m n predictor-corre value of A^{-1} wh rer method. for hyperbolic p	ethod in the cor ector method nen λ is an eigen partial differential	ntext of ordinary value of the matri	differential x <i>A</i> .	21
	Q2 a)	hyperbolic partial dif Design the Cubic sp x : f(x):	oline approximat 0 1 2 1 2 33 2	tion for the functio 3 244		data :	(5)
0	b) 210 Q3 a) b)	with $f''(0) = 0$, $f''(3)$ Justify that Hermite 210 Find the polynomial $f(x) = e^x$ and with Find the approximation	and the bound nodes 0 and 0.2	lynomial is unique 210 I for the error in o 2 .	e. ₂₁₀ case of linear inte	-	(5) (5) (5)
0	210	given the following of $\frac{x}{f(x)}$	0.4 0.0256	0.6 0.1296 210	0.8 0.4096	210	21
	Q4 a)	Evaluate approxima	$I = \int_{-1}^{1} e^{-x^2} \cos \theta$	sx dx		LIG	(5)
	b)	Find the $I = \int_0^1 \frac{dx}{1+x}$ correct u	approximate nto 3 decimal pl	value laces by using Ro	of the omberg integration	integral n.	(5)
10	210	210	210	210	210	210	21

210	210	210	210	210	210	210		210		
210	Q5 a) ²¹⁰ b)	approximation to the $y' - y - t^2 + 1$ 0 <	solution of the $t \le 2$, $y(0) =$	initial value proble = 0.5. Perform two	em o steps.	0.4.0	(5) (5)	210		
		using Power method.		$= \begin{bmatrix} -15 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$						
210	Q6 210	Describe Adam's-Ba method determine $y(5xy' = 2 - y^2, y(4) =$ method.	4.4) given that	210	210	210	(10)	210		
	Q7	Find the approxima equation by Forward	difference met	hod.	-	differential	(10)			
210	210	with boundary conditi and initial conditions Use $h = 0.1$ and $k =$	ons $u(0,t) = u(x,0)$			210		210		
	Q8 a) b) c)) Romberg algorithm for numerical integration.								
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		
210	210	210	210	210	210	210		210		