		210 210	210	210		210	210	210
	R	egistration No :						
Total	Nu	mber of Pages:02	2					B.Tech
		-		/ De els C loeve	la eti e e C	010 40	210 PE	E6J004
		6	Semester Regular CONTROL SYS					
				l : ELECTRIC Marks : 100	AL			
				e : 3 Hours				
Δns	wor	Question No 1 (Pa	Q.C art-1) which is com	ODE : F752	FIGHT f	rom Part	-II and any TW	O from
AIIS	WC1	210 210	210	Part-III. 210		210	210	210
		The	figures in the right	t hand margin	n indicate	e marks.		
01		Only Short Anous	Tuno Questione (A	Part- I				(2 × 40)
Q1	a)	Define transfer func	r Type Questions (A tion and pulse transfe	er function.				(2 x 10)
	b) c)		effect in sampling the and state its signification					
	d)	2What do you mean l	by zero input stability			210	210	210
	e) f)	Find the ∠-transform What do you unders	n of $f(t) = e^{-at} \cos \omega t$.					
	g)	States and prove the	e properties of state t					
	h)	The transfer function	on of certain system	is $\frac{Y(s)}{U(s)} = \frac{1}{s^4 + 1}$	$\frac{1}{5s^3 + 7s^2}$	$\frac{1}{+6s+3}$.	Write down the	
		matrix A, B of equiva	alent state model.					
	i) j)		e Cayley Hamilton Th g concept between S-		ane.	210	210	210
				Part- II				
Q2			rt Answer Type Que		г ¬			(6 x 8)
	- 1		inear time invariant s 210		<i>x</i> ₁	0 0 -	$2 \left[x_1 \right] \left[1 \right]$	
	a)	The state model of I 210 210	inear time invariant s	ystem is given	by $\begin{vmatrix} x_2 \\ \bullet \end{vmatrix} =$	1 0 - 210 1	$5 x_2 + -1 u$	210
					$\begin{bmatrix} x_3 \end{bmatrix}$	_0 1 _:	$9] [x_3] [0]$	
	b)		onical form of state va ation of non-linearitie		example e	ach		
	c)		nt system is characte				quation	
			$\begin{vmatrix} \bullet \\ x_1 \end{vmatrix}$	$= \begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$				
		210 210	210 $\begin{bmatrix} \bullet \\ x_2 \end{bmatrix}$	$\begin{bmatrix} 2 & 3 \end{bmatrix} \begin{bmatrix} x_2 \end{bmatrix}$		210	210	210
		Determine the solution	ion of homogeneous		ming the ir	nitial state	vector	
				$x_0 = \begin{vmatrix} 1 \\ 0 \end{vmatrix}.$				
	d)	•	sitive definite f	or given	quadratic	form	as follows	
			$2x_1x_2 - 6x_3x_2 - 2x_1x_3$					
	e)	2Explain the effect of	state feedback ₀ on co	ontrollabili <u>ty</u> anc	d observat	oilty,	210	210

			1/5						
210			210 210 $R(s)$ $E(s)$ 210 210 T = 1sec 20H $1/(s+1)$ $C(s)$ 210	210					
	Q6		Determine the unit step response ofa sampled data control system shown in figure	(16)					
C	Q5		Draw the magnitude and phase response (frequency response) of a zero order hold. (Derive the required expression.						
210	Q4		2What is nonlinear system? Define intentional and incidental non-liearities. Explain the non- linearities from each one and give the example each.	(16) 210					
			Consider the closed loop poles at $-1.5 \pm j4$, -5.5 , design a state feedback controller.						
210	Q3		The state equation of linear time invariant system is $\begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{3} \\ \mathbf{x}_{3} \end{bmatrix} = \begin{bmatrix} 210 & 210 \\ 0 & 1 & 0 \\ -1 & -2 & 1 \\ 3 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} u.$	210 (16)					
		I)	Define the stability of the system in Z-domain. Explain the necessary and sufficient conditions for Jury stability to verify the system is stable.						
210		k)	² Determine the eigen vectors of the given matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. ²¹⁰ ²¹⁰ ²¹⁰	210					
		j)	Find the state transition matrix for the following unforced system $\mathbf{\dot{x}} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -2 & 1 \\ 0 & 0 & -2 \end{bmatrix}$						
210		i)	amethod for stability. Take Lyapunov function $V(x) = x_1^2 + x_2^2$.210210Explain the Isocline method for construction of trajectories. $\begin{bmatrix} -2 & 1 & 0 \end{bmatrix}$	210					
		h)	Investigate the stability of the system described by $\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Use Lyapunovv						
210		g)	Check the observability of the system $\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 3 & 4 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	210					
		f)	Find IZT of $F(Z) = \frac{1}{z^2(z-1)^2(z+1)}$ by residue method.						

0 210 210 210 210 210 210 210

210