21	210	210	210	210	210	210		
					No :	egistration	R	
DTach						•		T = 4 =
B.Tech PEl6J002	210	210	210	210	210	mber of Pa	ainu	018
		n 2018-19 IS	Back Examination NTROL SYSTEM IE, EIE, IEE, IEE Irks : 100 3 Hours IE : F604	DVANCED C BRANCH : A Max M Time	6 [™] Seme			
TWO from 21	-II and any $\frac{1}{210}$	T from Part-	lsory, any EIGH	which is comp	No.1 (Part-1)	Question N	swer	Ans
		ate marks.	rt-III. ²¹⁰ and margin indi		The figure			
			art- I					
(2 x 10)			,		Concepts of sta ant by singular	Define the What is me	a) b)	Q1
21	210	atrix? ²¹⁰	state transition m	tion? 1, and -2, find tl	se transfer fund values are -1,	What is pull If the Eigen	c) d)	
			rcuit? Draw its circ and observability.	ample and hold	ou understand s	What do yo	e) f)	
			and observability.		transform of $f($		g)	
the	Vrite down t	$\frac{1}{s^2 + 6s + 3}$. V	$\frac{Y(s)}{U(s)} = \frac{1}{s^4 + 5s^3 + 7}$	ertain system i	er function of a	The transfe	h)	
21	210	210	rem. ²¹⁰ ne and Z-plane.	ey Hamilton The		State and e	i) j)	
(6 x 8)	f Twelve)		art- II ons- (Answer An nd give the examp saction matrix.	wer Type Ques	classification of	Explain the	a) b)	2
21	uation 210	eous state eq	ed by the homoger	em is character	e invariant sys	A linear tim	C)	
			1 0 $\begin{bmatrix} x_1 \end{bmatrix}$	$\begin{vmatrix} \bullet \\ x_1 \end{vmatrix}$				
			$\begin{bmatrix} 1 & 0 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	$\begin{bmatrix} \mathbf{\cdot} \\ x_2 \end{bmatrix}$				
	vector	e initial state	ation, assuming th	omogeneous e	the solution of	Determine		
21	vector 210	e initial state v 210		د ^{ری}] omogeneous e م	212		d)	
21			hation, assuming the second s	omogeneous e ہر escribing functi tion for relay of	expression for describing fun	² Obtain the Explain the	e)	
	210	210	hation, assuming the second system of the second system of the second system of the second system of trajectories.	omogeneous e ری escribing funct tion for relay of d for constructio	expression for describing fun Isocline metho	² Obtain the Explain the Explain the	e) f)	
	210	210	hation, assuming the second s	omogeneous e scribing funct tion for relay of for construction phase respon sion.	expression for describing fun lsocline metho magnitude and required expres	² Obtain the Explain the Explain the Draw the r Derive the r	e)	

		i)	What is Eigen value and state its significance? The state model of linear time invariant system is given by						
210			210 210 $\begin{vmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \\ \cdot \\ x_3 \end{vmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -5 \\ 0 & 1 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} u$ 210 210	210					
			Determine the canonical form of state variable						
210		j)	Find the state transition matrix for the following unforced system	210					
		k)	Find the IZT of $\frac{3z^2 + 2z + 1}{z^2 + 3z + 2}$.						
210		I)	Determine the state controllability and observability of the system described by	210					
			Part-III						
	Only Long Answer Type Questions (Answer Any Two out of Four)								
	Q3		Derive the solutions for both homogeneous and non-homogeneous state equation. (16))					
210	Q4		Obtain eigen values, eigen vectors and the state model in canonical form for a system (16) described by $\mathbf{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \mathbf{u}(t), \mathbf{y}(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}(t)$	210					
210	Q5		State the properties of ROC. Explain initial and final value theorem of Z-transform. (16) Solve the difference equation $2x(k+2) - 3x(k+1) + 2x(k+1) + 2x(k) = 3^k$. The initial conditions are x(0)=0 and x(1)=1.	210					
	Q6		The state equation of linear time invariant systems is (16))					
210			$\begin{bmatrix} \cdot \\ x_1 \\ \cdot \\ x_2 \\ \cdot \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & -2 & 1 \\ 2 t \begin{bmatrix} 0 & 3 & 0 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} u$ 210 210 consider the closed loop poles at -1.4±j4 , -5.5 . Design a state feedback controller	210					
210			210 210 210 210 210 210	210					