		R	Registration No :									
)	Tota	l Nu	mber of Pages 2:102 210 210 210 210	B.Tech								
			4 th Semester Regular / Back Examination 2018-19	1 -1-1101								
			COMMUNICATION SYSTEM ENGINEERING									
BRANCH : AEIE, EIE, IEE												
			Time : 3 Hours Max Marks : 100									
			Q.CODE: F253									
	Ar	ารพย	er Question No.1 (Part-1) which is compulsory, any eight from Part-II and any tw	o from 210								
			Part-III.									
			The figures in the right hand margin indicate marks.									
			Part- I									
	Q1											
		a)	Write the Fourier Transform of an impulse function, $f(t) = \delta(t)$.									
)		_	2Draw the block diagram of Electrical Communication System. 210	210								
		c) d)	, , , , , , , , , , , , , , , , , , , ,									
		,	$m(t) = \cos 2\pi 1000t + \cos 2\pi 2000t$.									
		e)	Illustrate the relationship between phase and frequency modulation.									
		f)	Draw the circuit diagram of an Envelope Detector and its output waveform. Determine the instantaneous frequency of a wave having a total phase angle given by,									
	g) Determine the instantaneous frequency of a wave having a total phase angle given by, $\psi(t) = 2000t + \sin 10t$.											
	h) Define Carson's rule for single tone and multi tone FM signal.											
		i)	What is TDM system? State the application of TDM system for any modulation technique.									
		j)	State Sampling Theorem.									
			Part- II									
	Q2	۵۱	Only Focused-Short Answer Type Questions- (Answer Any Eight out of Twelve)	(6 x 8)								
		a)	Find the Fourier Transform of a double-sided exponential signal $e^{-b t }$ and draw the spectrum.									
)		b)	Illustrate that the normalized Gaussian Pulse is its own Fourier transform.	210								
		c)	Justify the simplicity in AM modulation comes with a major burden of high power budget.	210								
		d)	Formulate the Fourier transform of, a) Sinusoid signal, $g(t) = sin(2\pi f_c t)$									
			b) squared sinusoidal signals, $s(t) = sin^2(2\pi f_c t)$									
		e)	Discuss the operation of a PLL with its proper equivalent circuit?									
		f)	Discuss a Superheterodyne System with respect to AM system.									
	 g) Explain the Armstrong method of generating FM signal. Why is it called indirect method? h) Design a system to multiplex many baseband signals over a single communication chan 											
)		•••	and recovery of these message signals.	210								
		i)	Explain the SSB generation using balanced modulators and phase shifters.									
		j)	An amplitude modulated voltage is given by,									
			$v(t) = 50(1 + 0.2\cos 100t + 0.01\cos 3500t)\cos 10^6t$. State all frequency component (in Hz) present in the modulated signal and find the modulation index for each									
			modulating voltage term. What is the effective modulation index of v(t)?									

Discuss the demodulation of FM signal using balanced frequency discriminator.

Explain the different types of PAM signals. Illustrate how Sample and hold Circuit helps in

k)

signal recovery in PAM system?

210	Q3	Part-III Only Long Answer Type Questions (Answer Any Two out of Four) Calculate the energy and the energy spectral density of the $sinc$ pulse defined by, ${}^2g(t) = A sinc \ (2Wt)$. Find the autocorrelation function of the $sinc$ pulse. Discuss the phase discrimination method for generation of VSB modulated signal. What are its advantages over DSB and SSB modulation? Mention its applications. Consider a modulating signal $m(t) = 2sin(2\pi 10^3 t)$ is used to modulate a carrier of frequency 10^6 Hz. Find the bandwidth for, a) Phase modulation and frequency modulation for the above also, 2b) When modulating frequency is doubled 210 210 210 c) When amplitude of modulating signal is halved, thereafter. Use $\beta_p = 10$ and $\beta_f = 10$ unit.							
	Q4								
210	Q5								
	Q6	Describe block dia	the generation of gram.	PWM and PPN	1 signal and drav	w the waveforms	justifying your	(16)	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	
210		210	210	210	210	210	210	210	